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FOREWORD

The proliferation of knowledge now makes it most difficult for scientists or
engineers to keep ahead of change even in their own fields, let alone in contiguous
fields. One of the fields where recent change has been most noticeable, and in fact
exponential, has been automatic control. This three-volume Handbook will aid
individuals in almost every branch of technology who must constantly refresh their
memories or refurbish their knowledge about many aspects of their work.

Automation, computation, and control, as we know them, have been evolving
for centuries, but within the last generation their impact has been felt in nearly
every segment of human endeavor. Feedback principles were exploited by Leonardo
da Vinci and applied by James Watt. Some of the early theoretical work of im-
portance was contributed by Lord Kelvin, who also, together with Charles Babbage,
pointed the way to the development of today’s giant computational aids. Since
about the turn of the present century, the works of men like Minorsky, Nyquist,
‘Wiener, Bush, Hazen, and Von Neuman gave quantum jumps to computation and
control. But it was during and immediately following World War II that quantum
jumps occurred in abundance. This was the period when theories of control, new
concepts of computation, new areas of application, and a host of new devices ap-
peared with great rapidity. Technologists now find these fields charged with chal-
lenge, but at the same time hard to encompass. From the activities of World War 11
such terms as servomechanism, feedback control, digital and analog computer,
transducer, and system engineering reached maturity. More recently the word
automation has become deeply entrenched as meaning something about the field
on which no two people agree.

Philosophically minded technologists do not accept automation merely as a third
Industrial Revolution. They see it, as they stand about where the editors of this
Handbook stood when they projected this work, as a manifestation of one of the
greatest Intellectual Revolutions in Thinking that has occurred for a long time. They
see in automation the natural consequence of man’s urge to exploit modern science
on a wide front to perform useful tasks in, for example, manufacturing, transporta-
tion, business, physical science, social science, medicine, the military, and govern-
ment. They see that it has brought great change to our conventional way of think-
ing about the human use of human beings, to quote Norbert Wiener, and in turn
about how our engineers will be trained to solve tomorrow’s engineering problems.
They even see that it has precipitated some deep thinking on the part of our indus-
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viii FOREWORD

trial and union leadership about the organization of workers in order not to hold
captive bodies of workmen for jobs that automation, computation, and control have
swept or will soon sweep away.

Perhaps the important new face on today s technological scene is the degree to
which the broad field needs codification and unification in order that technologists
can optimize their role to exploit it for the general good. One of the early instances
of organized academic instruction in the field was at The Massachusetts Institute
of Technology in the Electrical Engineering Department in September 1939, as a
course entitled Theory and Application of Servomechanisms. I can well recollect
discussions around 1940 with the late Dr. Donald P. Campbell and Dr. Harold L.
Hazen, which led temporarily to renaming the course Dynamic Analysis of Auto-
matic Control Systems because so few students knew what “servomechanisms”
were. ‘But when the GI’s returned from war everybody knew, and everyone wanted
instruction. Since that time engineering colleges throughout the land have elected
to offer organized instruction in a multitude of topies ranging from the most ab-
stract mathematical fundamentals to the most specific applications of hardware.
Textbooks are available on every subject along this broad spectrum. But still the
practicing control or computer technologist experiences great difficulty keeping
abreast of what he needs to know.

As organized instruction appeared in educational institutions, and as industrial
activity increased, professional societies organized groups in the areas of control and
computation to meet the needs of their members to tell one another about technical
advances. Within the past five years several trade journals have undertaken to
report regularly on developments in theory, components, and systems. The net
effect of all this is that the technologist is overwhelmed with fragmentary, some-
times contradictory, redundant information that comes at him at random and in
many languages. The problem of assessing and codifying even a portion of this
avalanche of knowledge is beyond the capabilities of even the most able technologist.

The editors of the Handbook have rightly concluded that what each technologist
needs for his long term professional growth is fo have a body of knowledge that is
negotiable at par in any one of a number of related fields for many years to come. It
would be ideal, of course, if a college education could give a prospective technologist
this kind of knowledge. It is in the hope of doing this that engineering curricula
are becoming more broadly based in science and engineering science. But it is un-
likely that even this kind of college training will be adequate to cope with the con-
sequences of the rapid proliferation of technology as is manifest in the area of
automation, computation, and control. Hence, handbooks are an essential com-
ponent of the technical literature when they provide the unity and contmulty that
are requisite.

I can think of no better way to describe this Handbook than to say that the
editors, in both their organization of material and selection of substance, have
given technologists a unified work of lasting value. It truly represents today’s
optimum package of that body of knowledge that will be negotiable at par by
technologists for many years to come in a wide range of disciplines.

GorpoN S. BRowN
Massachusetts Institute of Technology



PREFACE

Accelerated advances in technology have brought a steady stream of
automatic machines to our factories, offices, and homes. The earliest
automation forms were concerned with doing work, followed by the con-
trolling function, and recently the big surge in automation has been
directed toward data handling functions. New devices ranging from
digital computers to satellites have resulted from military and other
government research and development programs. Such activity will con-
tinue to have an important impact on automation progress.

One of the pressures for the development of automation has been the
growing complexity and speed of business and industrial operations. But
automation in turn accelerates the tempo of whatever it touches, so that
we can expect future systems to be even larger, faster, and more complex.
While a segment of engineering will continue to mastermind, by rule of
thumb procedures, the design and construction of automatic equipment
and systems, a growing percentage of engineering effort will be devoted to
activities that may be classified as problem solving. The activities of the
problem solver involve analysis of previous behavior of systems and equip-
ment, simulation of present situations, and predictions about the future.
In the past, problem solving has largely been practiced by engineers and
scientists, using slide rules and hand calculators, but with the advent of
large-scale data processing systems, the range of applications has been
broadened considerably to include economic, government, and social activi-
ties. Air traffic control, traffic simulation, library searching, and language
translation, are typical of the problems that have been attacked.

This Handbook is directed toward the problem solvers—the engineers,
scientists, technicians, managers, and others from all walks of life who are
concerned with applying technology to the mushréooming developments in
automatic equipment and systems. It is our purpose to gather together
in one place the available theory and information on general mathematics,
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X PREFACE

feedback control, computers, data processing, and systems design. The
emphasis has been on practical methods of applying theory, new techniques
and components, and the ever broadening role of the electronic computer.
Each chapter starts with definitions and descriptions aimed at providing
perspective and moves on to more complicated theory, analysis, and appli-
cations. In general, the Handbook assumes some engineering training and
will serve as an information source and refresher for practicing engineers.
For management, it will provide a frame of reference and background ma-
terial for understanding modern techniques of importance to business and
industry. To others engaged in various ramifications of automation sys-
tems, the Handbook will provide a source of definitions and descriptive
material about new areas of technology.

It would be difficult for any one individual or small group of individuals
to prepare a handbook of this type. A large number of contributors, each
with a field of specialty, is required to provide the engineer with the desired
coverage. With such a broad field, it is difficult to treat all material in a
homogeneous manner. Topics in new fields are given in more detail than
the older, established ones since there is a need for more background
information on these new subjects. The organization of the material is in
three volumes as shown on the inside cover of the Handbook. Volume 1 is
on Conirol Fundamentals, Volume 2 is concerned with Computers and Data
Processing, and Volume 3 with Systems and Components.

In keeping with the purpose of this Handbook, Volume 1 has a strong
treatment of general mathematics which includes chapters on subjects not
ordinarily found in engineering handbooks. These include sets and rela-
tions, Boolean algebra, probability, and statistics. Additional chapters are
devoted to numerical analysis, operations research, and information theory.
Finally, the present status of feedback control theory is summarized in
eight chapters.  Components have been placed with systems in Volume 3
rather than with control theory in- Volume 1, although any discussion of
feedback control must, of necessity, be concerned with.components.

The importance of computing in research, development, production, real
time process control, and business applications, has steadily increased.
Hence, Volume 2 is devoted entirely to the design and use of analog and
digital computers and data processors. In addition to covering the status
of knowledge today in these fields, there are chapters on unusual computer
systems, magnetic core and transistor circuits, and an advanced treatment
of programming. Volume 3 emphasizes systems engineering. A part of the
volume covers techniques used in important industrial applications by
examining typical systems. The treatment of components is largely con-
cerned with how to select components among the various alternates, their
mathematical description and their integration into systems. There is also
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a treatment of the design of components of considerable importance today.
These include magnetic amplifiers, semiconductors, and gyroscopes.

We consider this Handbook a pioneering effort in a field that is steadily
pushing back frontiers. It is our hope that these volumes will not only
provide basic information on new fields, but will also inspire work and
further research and development in the fields of automatic control. The
editors are pleased to acknowledge the advice and assistance of Professor
Gordon 8. Brown and Professor Jerome S. Wiesner of the Massachusetts
Institute of Technology, and Dr. Brockway McMillan of the Bell Tele-
phone Laboratories, in organizing the subject matter. To the contributors
goes the major credit for providing clear, thorough treatments of their
subjects. The editors are deeply indebted to the large number of specialists
in the control field who have aided and encouraged this undertaking by
reviewing manuscripts and making valuable suggestions. Many members
of the technical staff and secretarial staff of The Ramo-Wooldridge Corpora-
tion have been especially helpful in speeding the progress of the Handbook.

EuceENE M. GRABBE
SmoN Ramo

DEean E. WoOLDRIDGE
August 1958
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1. SETS

A set is a collection of objects of any sort. The words class, family,
ensemble, aggregate are synonyms for the term set.

Each object in a set is called an element (member) of the set. If S de-
notes the set and b an element of S, one writes:

beS;

this is read: “b belongs to S8.” If b does not belong to S, one writes: b & S.
Sets will generally be designated by capital letters, elements by lower
case letters.
ImporTANT EXAMPLES OF SETS. Z, the set of positive integers z; Z con-
sists of the numbers 1, 2, 3, ---;
J, the set of all integers j (including 0 and the negative integers);
101



1-02 GENERAL MATHEMATICS

Q, the set of rational numbers ¢ (fractions a/b, where a is an integer and
b is a positive integer);

R, the set of all real numbers r (numbers which are expressible as unend-
ing decimals);

C, the set of all complex numbers ¢ (numbers of form x + y\/—_l, where

z and y are real).
In geometry one employs sets of points; for example, all points on a speci-
fied line or all points inside a circle.
T Geometric diagrams can be helpful in
l 3 reasoning -about sets which may have
bl no reference to geometry (Fig. 1).
A set can be designated by listing
J._. its elements between braces. Thus
.S =1{1, =3,7}
F1e. 1. Set and subset. 7T is a subset
of §, T c 8. is the set whose elements are the num-
bers 1, —3, and 7. For infinite sets
one stlll uses braces, but instead of writing all the elements one gives a
rule for set membershlp. For example, Z = {z|zis a positive integer} is an
abbreviation for “Z is the set of all z for which 2z is a positive integer.”
This set is also sometimes designated (less precisely) by
Z = {1y2’37 e, n, }
Two sets are said to be equal if they have exactly the same members.
For example, if
= {1,3,5,7}, B=1{31,5,17}

" then A = B. Neither the order in which the elements are written down
nor the number of times that an element is repeated within the braces is
significant. If A is not equal to B, one writes: 4 = B.

Subsets. The set 7' is said to be a subset of the set S (Fig. 1) if every
member of 7' is also a member of S; in symbols,

TcS or SDOT.

IfbothTcSand S < T, S and T are equal.
I SO Tand S = T, ie, if S contains every element of T and at least
one element not in 7', one says that S contains T properly or that T is a

- proper subset of S; in symbols,

S>T o T<S.
The symbol ‘
T = {t|t € S and ¢ has properties P, Q}
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indicates that 7 is the subset of S consisting of precisely those elements ¢
of S which have the properties P and Q.

Examrre. If S is a set of people, one might consider the subset T of S
consisting of those members of S who are college graduates and are married:

T = {t|t € S and ¢ is a college graduate and ¢ is married}.
Another example. If R is the set of all real numbers, then
= {t{t CR and 1=t < 3} is called a closed interval.

The symbol # is used to designate the empty (void) set, which has no ele-
ments; @ is a subset of every set.

The collection of all subsets of a given set S is called the power set of S
and is denoted by 25. Thus

= {U| U is a subset of S}.

The notation is suggested by the fact that if S is a finite set consisting of n
elements, then 25 has 2" elements.

Difference, Complement, Union and Intersection. If S and 7T are
sets, the difference S — T is defined to be the set consisting of those ele-
ments of S which are not in 7', thus

S—T=1{s|ls€Sandsq T}.

If T is a subset of S, then S — T is called the complement of T in S and is
denoted by C,T or even by CT if there can be no doubt about what S is.
The union of S and T, denoted by S U T, is the set consisting of those
elements in S or in 7 (or in both). ‘
The set (S — T) U (T — S) is termed the symmetric difference of S and
T and is commonly denoted by S@® 7. Thus

SPT = {s|s€Sandsqg T} U [sCTands@S}

The intersection of S and T, denoted as S N T, is the set con31st1ng of
those elements common to S and 7. Thus

SNT={ylyc€ Sandy € T}.

Difference, symmetric difference, complement, union, and intersection
are illustrated in Fig. 2.

The union of a finite number of sets Sy, S, - - -, S, is defined as the set
consisting of all elements belonging to at least one of the sets Sy, - -, S,.
In symbols,

U Sa = {t|there is at least one S, for which ¢ C S 1.
a1
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If one denotes by A = {1, 2, - - -, n} the set over which the index « varies,
one can also denote this set by |J S,. The same notation can be used
ac_ A

when A is an arbitrary index set, not necessarily finite.

SuT S®T
== EN s | é%
S i — ‘ i =
— S§-T 4
o 5’;\_5
U=gnr s: [
= R
U:ER

Fic. 2. Set operations.

The intersection of Sy, Sa, - -+, S, is defined as the set consisting of all
elements common to all of Sj, Ss, -+, S,. In symbols,
N Se = {t|t ESpfora=1,2 ---,0} = () S
a=1 a€A
If one restricts attention to subsets of one fixed set U, and complements
are taken with respect to U, then there is a duality between union and
intersection:

cSuUT=0C8NCrT,
CS8NT)=CSUCT.

Accordingly, if all sets are replaced by their complements, all unions are
replaced by intersections, all intersections by unions.

Union, intersection, and complement satisfy several other laws, of which
the following are typical:

AUB=BUA, ANBUCO=ANBUMNDO).

These come under the theory of Boolean algebra (Sec. 7 and Chap. 11).
Cartesian Product. The Cartesian product S X T' of two sets S and
T is the set of all ordered pairs (s, ¢), where s € S and { € T. Thus, if

S = {a) b}> T = {1) 2’3}:
then S X T consists of the 6 pairs
@ 1), (@ 2), @@ 3), B, 1), G, 2), G 3).
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If R denotes the set of all real numbers, then B X R consists of all ordered
pairs (z, y), where z and y are real; thus B X R can be represented by the
points (x, i) of the zy-plane of analytic geometry.

The Cartesian product of sets Sy, - -+, S, in the order given is the set

t=1
of all ordered n-tuples (vectors) (Si, ---, Sy), where s; € S; (2 = 1, 2,
ceo,m). If 8y, ---, S, -+ is an infinite sequence of sets, one denotes the
Cartesian product by :

0

XSi}

i=1

this is the set of all infinite sequences (s;, ---, su, *+-), where s; € S;
(z = 1, cee,m, ...).

2. RELATIONS

Let two sets 4, B be given. A binary relation R is said to be given be-
tween elements a of A and b of B if, for certain pairs (a, b), the relation B
is valid, while for all others it is invalid. For example, let 4 = {1, 2, 3},
B = {4, 6, 8} and let the relation R between a and b be the condition that
a equal 14b. The relation is valid for the pairs

@, 4), 3, 6)
and for no others.

In general, specification of a relation R is equivalent to selection of the
pairs (a, b) for which R is to be valid. This set of pairs is a subset of the
Cartesian product A X B. Hence a relation R is equivalent to selection
of a subset of A X B. This subset can also be denoted by R.

If (@, b) is a pair for which the relation R is valid, one can write: aRb.
In particular cases, other symbols can be used. In the example given
above, one can write: a = 14b.

When A = B, the relation R holds for certain pairs (a, b) of elements of
A. One says: R is a binary relation in A. If A is the set of positive inte-
gers, R can be chosen as the relation of “being less than”; in symbols, aRb
becomes a < b. One can then interpret R as the set of all pairs (a, b) of
positive integers for which @ < b. Thus, instead of writing 2 < 3, one
can write: (2, 3) € R, to indicate that the relation is valid; similarly, (4, 3)
g R, since 4 < 3 is false.

Let R be a relation between elements a of A and b of B, so that aRb for
certain pairs (a, b). Whenever aRb, one writes bRTa and calls RT the
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transpose of the relation R. For example, the transpose of the relation < is
the relation >; the transpose of the relation “is the wife of” is the rela-
tion ““is the husband of.”

Range and Domain. Let R be a relation between elements a of A and
b of B. For each ain A one denotes by R(a) the set of all b in B for which
aRb; R(a) is called the mage of a under B. For each subset S of A one
denotes by R(S) the set of all b in B for which aRb for at least one ¢ in S;
R(S) is called the image of S under R. The image of A under R, the set
R(A), is called the range of R.

The counterimage of an element b under R is the set of all elements a for
which aRb; this is the same as the set RT(b). The counterimage of a subset
U of B is the set of all a in A for which aRb for at least one b in U; this
is the same as the set RT(U). The set RT(B) is called the domain
of R.

A relation is sometimes called a correspondence between its domain and
its range. . o

Product of Relations. If R is a relation between elements a of A and b
of B and S is a relation between elements b of B and elements ¢ of C, the
product relation (or composition) RS is defined as a relation between ele-
ments a of A and ¢ of C, as follows: aRSc whenever for some b in B one
has aRb and bSc. »

ExampLeE. The product can be illustrated by a communications net-
work. Let A, B, C be three sets of stations, let aRb mean that a can com-
municate with b and let bSc mean that b can communicate with ¢. Then
aRSc means that there is a two-stage communication link from a through
some intermediate station b to ¢. For products of three relations one has
the associative law A (BC) = (AB)C. ‘

3. FUNCTIONS

A relation F between elements a of A and b of B is said to be a function
if, for every a in A, F(a) is either empty or contains just one element. If
in addition F has domain A, one says that F is a function on A into B. In
this case one identifies F'(a) with its unique element b and writes: b = F(a)
or

a i) b

The terms mapping and transformation are synonyms for function. A
function F on 4 into B can be defined directly as a correspondence which
assigns to each element a in A a unique image b = F(a) in B. The set B
is called a codomain of F. The range F(A) is a subset of B. If F(4) = B,
one says that F is a function on A onio B.

If both F and FT are functions, one says that F is a one-to-one function.
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The transpose I is then termed the tnverse of F and is denoted by F~1. A
one-to-one function on A onto B is called a one-to-one correspondence between
A and B. In this case one has

(FFTYa = FT(F(a)) = a for all ¢ in 4;

FFT is the identity function E4 on A onto A: E4(a) = a; similarly, FTF =
Ep.

In classical analysis, a function F is often denoted by F(x). The symbol
F(z) then has two meanings: the value of the function for a particular z,
and the function as a whole. Similarly, F(x, y) denotes a function of two
variables and also the value of the function for given z, y.

4. BINARY RELATIONS ON A SET

A relation R on a set A is said to be

Identical if R = Ejy4, i.e., if aRb is equivalent to a = b;

Reflexive if R D Ey, i.6., if aRa for all ¢ in 4

Irreflexive if R N E4 = @, 1e., if aRafornoain 4;

Transitive if R* C R, i.e., if aRb and bRc imply aRc;

Symmetric if R = R7, i.e., if aRb implies bRa;

Antisymmetric if R ﬂ RT (- EA, ie., if aRb and bRa imply a = b;

Asymmetric if R N BT = @, ie., if for no a, b is aRb and bRa;

Acyclicif R* N E4 = @ for all n ie., if ayRas, axRag, + - an_lRan im-
Ply a1 5 an;

Completeif R U RT = A X A, i.e., if for each pair (a, b) either aRb or
bRa;

Trichotomous if RURT UE4s = A X A and R N BT = @, i.e,, if for
each pair (a, b) exactly one of the relations aRb, bRa, a = b holds.

Note that a relation is asymmetric if and only if it is antisymmetric and
irreflexive. :

Exampres. The parallel relation on lines in a plane is symmetrice, irre-
flexive but not transitive (unless a line is defined to be parallel to itself).
The relation < on the real numbers is asymmetric, transitive, trichotomous,
and acyclic; whereas the relation = is antisymmetric, reflexive, transitive,
and complete. The relation “is at least as good as” is reflexive, transitive,
but not antisymmetric if there are two objects judged equally good.

5. EQUIVALENCE RELATIONS

By a partition of a set A is meant a subdivision of 4 into subsets, no two
of which have an element in common. By 4n equivalence relation R in A
is meant a relation B in A which is reflexive, symmetric, and transitive.
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Each partition of A determines an equivalence relation in A4; aRb holds
when a and b are in the same subset of the partition. Conversely, each
equivalence relation determines a partition of 4 ; the subsets of the parti-
tion are the sets R(a), i.e., the sets of form {b|bRa}. The sets R(a) are
called equivalence classes.

Equivalence is the basis of classification; the equivalence classes contain
elements which, although not identical, can be regarded as alike or inter-
changeable for some purpose. Example. The sorting of nuts and bolts is
based on the equivalence relation “has the same size and shape as.” A
property shared by all elements of each equivalence class is called an in-
variani. More formally, let B be an equivalence relation on a set A. A
function F on 4 is said to be an invariant relative to R if aRb implies F(a)
= F(b). For example, if R is the relation of congruence on a set A of tri-
angles, then the function F(a) = area of triangle ¢ is an invariant.

A set of invariants F, G, - - - relative to a relation R is said to be com-
plete if

F(a) = F(b), G(a) = G(b), « - - together imply aRb.

The language “a necessary and sufficient for K is that Py, Ps, - - - all hold”
frequently states that P;, P, --- are a complete set of invariants for an
equivalence relation associated with K. Many of the theorems of elemen-
tary geometry fall in this class.

One sometimes is interested in choosing from each equivalence class a
representative from which one or more invariants can be easily calculated.
Such representatives are said to be in normal form or standard form. More
technically, let R be an equivalence relation on a set A. A function which
assigns to each equivalence class R(a) one of its members is called a canoni-
cal form relative to R. Thus in matrix theory (Chap. 3) one has canonical
forms for row equivalence, equivalence, congruence, orthogonal congruence,
and similarity, It is customary to select a representative which displays a
complete set of invariants.

6. OPERATIONS

A function F assigning to each ordered pair (a, b), with ¢ in A and b in
B, an element ¢ of set C is called a (binary) operation on A X B. If
F(a, b) = ¢, one also writes aFb =¢. If A = B, F is called an operation
onA. Ifalso C = A, F is called an interior operation; otherwise F is called
an exierior operation.

ExamprLes. Addition and multiplication of numbers are interior opera-
tions. The scalar product of two vectors is an exterior operation.

Let F be an interior operation on A and let R be an equivalence relation
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on A. One says that I' has the substitution property relative to R, if aRa’
and bRb imply (aFb)R(a'Fb’). Example. Let A be the set of all integers; -
let aRb mean that a and b have the same parity (both even or both odd).
Then-aRa’ and bRV imply that (a + b)R(a’ + b'). Thus addition has the
substitution property relative to R.

An exterior operation is said to have the substitution property relative
to R if aRa’ and bRV imply (aFb) = (a'Fb’). :

7. ORDER RELATIONS

A relation = on a set 4 is said to be a partial order if

(1) a = a (reflexivity),

(ii) a S band b £ ¢ imply a = ¢ (transitivity),

(iii) ¢ < band b = a imply a = b (antisymmeiry).

Ifa < banda #Db, one writes: @ < b. The relation < is then asymmetrie:

(iv) fornoa,bisa < band b < qa;
it is also transitive. If @ £ b and b < ¢, one writes: b = a and ¢ > b
(transposition). An element a of A is said to be an upper bound for the
subset B of A if b < a for all b in B;if also ¢ = ¢ for every upper bound ¢
of B, one says that a is a least upper bound (l.u.b.) for B. An upper bound
for B which belongs to B is called a maximal element of B.

If in these definitions one replaces < by =, the resulting concepts are
called lower bound, greatest lower bound (g.1.b.) and minimal element, respec-
tively.

The least upper bound (greatest lower bound) of a set, if it exists, is
unique.

The partial order is said to be a linear order or chain order, if it is com-
plete:

(v) for every a, b eithera < bord = a.

ExampLes. The relation ¢ < b between real numbers is a linear order;
there is no maximal or minimal element. The complex numbers z + 3z
can be partially ordered by the definition: @ + b2 < ¢ + di if a < ¢ or if
a = cand b = d. Numbers with the same real part are not compared.

A partially ordered set A is said to be a lattice if each subset containing
two elements has a least upper bound and a greatest lower bound.

ExampLeE. Let A be the class of all subsets of a given set B and let
S < Tif Sisasubset of T, ie., if SC T. Then 4 is a lattice and Lu.b.
(S, T} =S UT, glb. {S, T} =S N T. One extends this notation to
lattices generally and uses ¢ U b (a cup b) for Lu.b. {a, b}, a N b (a cap b)
for glb. {a, b}. If every subset of A has a glb. and a l.u.b., then 4 is
called a complete lattice. The example given of a class of all subsets of a
given set is a complete lattice. .
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In a lattice the operations U and N have the following properties:
“Forall a, b, cin 4

aUb=bUaganda Nb =05 N a (commutative laws);

@UbUc=aU@®GUc¢and @Nbd) Nec=a N (b Nc) (associa-
tive laws);

aUa=aqa a a=a (idempotent laws);

aN(@Ub) =a aU(aNb) = a (absorptive laws).

A lattice is said to be distributive if for all a, b, cin 4
aUGNe)=0@UB N @Ue

or, equivalently,if a N d U ¢) = (e N b) U (a N ¢) for all g, b, c.

If A has a minimal element and a maximal element, one ordinarily de-
notes them by 0, 1 respectively. Two elements a and b are said to be com-
plements of each otherifa N b = 0anda U b = 1. A lattice is said to be
complemented if each of its elements has a complement. In a distributive
lattice, no element can have more than one complement. A Boolean alge-
bra is a complemented, distributive lattice. (See Chap. 11.)

ExampLr. The partially ordered set formed of the class of all subsets
of a given set B forms a Boolean algebra. The minimal and maximal ele-
ments are the empty set @, and the set B the complement is the same as
that defined in Sect. 1.

REMARK. A relation < which satisfies only conditions (i) and (ii) is
called a preorder or quasi-order. An example is the relation “is at least as
good as”’ between automobiles.

8. SETS OF POINTS

Sets of real numbers can be interpreted as sets of points on the real line,
or number axis. For fixed a, b, a < b,

{x]a < 2 < b} is an open interval,
{z|a = x = b} is a closed interval,
{zla £ x < b} or {x|a < z < b} is a half-open interval.

For fixed q, ¢, € > 0, the set
Azla —e<z < a+ €

is the e-nezghborhood of a. An arbitrary set of real numbers is open if each
element of the set has an e-neighborhood contained in the set. A set is
closed if its complement is open. A number a is a limit point of a set A if
every e-neighborhood of a contains at least one element of A differing from
a.
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Sets of ordered number pairs (z, ¥) can be interpreted as sets of points
in the xy-plane. TFor fixed (q, b) and ¢ > O the set

(@)@ —0a)®+ G —0)7°<¢

is the e-neighborhood of (a, b). A set of points in the zy-plane is open if
each point (a, b) in the set has an e-neighborhood contained in the set. A
set is closed if its complement is open. A point (a, b) is a limit point of a
set A if every eneighborhood of (a, b) contains at least one element of A
differing from (a, b). An open set is called an open region or domain if each
two points of the set can be joined by a broken line within the set. A
point (a, b) is a boundary point of set A if every e-neighborhood of (a, b)
contains at least one point of A and at least one point not in 4. The
boundary of A is the set of all boundary points of A. A closed region is a
set formed of the union of an open region and its boundary. A point (g, b)
of a set A is called an isolated point of A if some e-neighborhood of (a, b)
contains no element of 4 other than (a, b).
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1. POLYNOMIALS

A polynomial may be defined as a function f = f(z) defined by an equa-
tion

f(x) = a,2" + an—lxn~l +o oz + g,

where the coefficients ao, a;, « - -, a, are constants (real or complex) and z
is variable (real or complex). The leading coefficient a, will be assumed
5% 0. The degree of f is n. A polynomial a2® + a3z + ap of degree 2 is
quadratic; a polynomial a1z + ag, of degree 1 is linear; we accept the con-
stant polynomials: f(x) = ao, although the zero polynomial f(z) = 0 must
be tacitly excluded from certain contexts.

An algebraic cquation of degree » is an equation of form: polynomial of
degree n in z = 0; that is, of form

f@) =aa"+---+a =0 (a, =0).

A root of such an equation is a value of x which satisfies it; a root of the
equation is called a root of f(2) or a zero of f(x). Thus r is a root of f(z) if
and only if f(r) = 0.

2.01
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The fundamental theorem of algebra asserts that an algebraic equation of
degree n (n = 1, 2, ---) has at least one root (real or complex) (Refs. 1, 2).
From this it follows that an algebraic equation of degree n has exactly n
roots (some of which may be repeated, see below).

The operations of addition, subtraction, multiplication, and division of
polynomials will be assumed to be familiar.

Synthetic division is an abbreviation of division by a linear polynomial,
x — c. As an dlustration, the division of 322 — 7z 4+ 11 by = — 2 is car-
ried out in long form and by synthetic division.

3z —1
x — 2|32 — Tz + 11 203 -7 11
32? — 6 0 6— 2
— x4+ 11 3—1 9
x4+ 2

9
Kither method yields the quotient 3x — 1 and remainder 9, so that
322 — 7z + 11 = 8z — (@ — 2) + 9.

In the synthetic process, on the first line one replaces z — 2 by +2,
322 — 7z + 11 by the numbers 3, —7, 11. A zero is placed below the 3
and added to yield 3; the result is multiplied by 2 to yield 6; the 6 is added
to —7 to yield —1; the —1 is multiplied by 2 to yield —2; the —2 is
added to 11 to yield 9. On the third line the coefficients of the quotient,
3z — 1, and the remainder, 9, appear in order.

ReEMAINDER THEOREM. If @ polynomial f(x) is divided by x — ¢, then the
remainder 1s f(c).

Facror THEOREM.. ¢ is a root of f(x) of and only of x — ¢ is a factor of
J@) (Ref. 2).

AppricaTioN. If one root, ¢, of f(x) has been found, the remaining roots
of f(z) will be roots of the quotient polynomial f(z) + (x — ¢), which is of
degree n — 1. Repetition of this reasoning leads to a representation of f(x)
as a constant times a product of linear factors (x — ¢), (x — ¢g), - --.
Since f(z) is of degree n there must be exactly n such factors:

J@) = anle —e))(@ —c2) -+ (@ — cp).

Thus f(z) has » roots ¢, ce, - - -, ¢y, some of which may be equal. If ¢; is
repeated m times, so that (x — ¢;)™ is a factor of f(z) (and (x — ¢;)" ' is
not a factor), then ¢, is a root of multiplicity m.
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Repeated Roots. If ¢ is a repeated root of f(x) (a root of multiplicity
2 or more), then ¢ will also be a root of f'(x), the derivative of f(z),

S @) = nape ™t 4 (0 = Dap_g2" 2+ ay.
To find the repeated roots, one can proceed as follows. Let

Jo(@) = f(x), fil@) = f'(z),
and by division obtain

fol@) = p1(@)f1(@) + fo(@),

where fo(z) is of degree lower than that of f1(z). Continue, taking

JSim(@) = g:(@)f () +ft+1($);

until f;;(x) = 0. Then the repeated roots of f(x) are the roots of f,(x).
If f,(x) is a (non-zero) constant, f(x) has no repeated roots. Otherwise all
repeated roots of f(z) can be found as the roots of fi(z), which has degree
lower than that of f (Ref. 2).

2. REAL ROOTS

In this section f(x) denotes a polynomial with real coefficients. If f(z)
is of odd degree, f(x) has at least one real root, whereas 2* + 1, for exam-
ple, has no real roots. Two problems will be considered: (1) establishing
existence of real roots, perhaps within preseribed intervals; (2) computing
to a satisfactory accuracy the value of a root that has been approximately
located.

Graphical Methods. One plots the graph of y = f(x). The roots of
odd multiplicity are the values of z at which the curve crosses the z-axis,
while at roots of even multiplicity the curve is tangent to the z-axis. If
f(x1) and f(zz) have opposite signs, there is a root between x; and z,. 'In
practice, one could use synthetic division to compute the values of f(z) for
a number of values of x within some interval @ £ x £ b. The values ¢ and
b can be chosen so that all roots lie between a and b; in particular, all real
roots lie in the interval

M M
| an] @]

where M is the largest of the numbers |aol|, |a1[, - -, |an—1|. Narrower
bounds can often be found by inspection. If in computation of f(b) by
synthetic division, the third row consists of non-negative numbers, then no
real root exceeds b. An alternative criterion is Newton’s rule: if the values
), f'(®), +-+, f™(b) of the successive derivatives are all non-negative,
then no root exceeds b. These last two rules can be applied to the equa-




’

2-04 GENERAL MATHEMATICS

tion obtained by replacing x by —z, in order to obtain a lower bound a.
The following rule is sometimes useful: if g(z) = z"f(1/x) and if g has all
of its real roots between —b and +b, then f has no real roots between
—(1/b) and (1/b).

Derivative. The value f'(c) of the derivative at ¢ gives the rate of
increase (decrease, if f'(c) < 0) of f(z) at £ = ¢. At an extremum (relative
maximum or minimum) of f(x), f/(z) is zero; there can be at most n — 1
such values of x (critical points of f(x)).

RoLLe’s THEOREM. Between each two real roots of f(x) there is at least one
critical point. ' :

Descartes and Sturm Tests. Zero is a root of f(x) only if ag = 0. By
division by x or some power of z, all zero roots can be removed. Informa-
tion about the number of positive roots is given by:

DxuscarTes’s RULE. The signs of the coefficients ay, p—q, - - -, ag tn order,
omitiing possible zeros, form a string of +’s and —’s. The number v of
alternations in sign s defined as the number of consecutive pairs -+— or
— 4. The number p of posttive roots s no greater than v and v — p s even.
(Negative roots of f(x) are the positive roots of f(—z).)

Exampres. 22 4+ 2 + 1 = 0,v = 0, no positive roots; 2 — 2z + 3 = 0,
v = 2, 0 or 2 positive roots; 2> + 2 — 3 = 0, » = 1, 1 positive root. A
more precise criterion is given by:

Sturm’s THEOREM. Write folx) = f(x), filx) = f'(x) and, stepwise,
fi1@) = @@)fi(@) — fe1(@), where f141(x) is of lower degree than fi(x).
Continue until some fp,41(x) = 0. Now suppose a < b, f(a) # 0, f(b) # 0.
Let v(a) be the number of alternations in sign in the sequence of values f1(c),
fale), <+, fmlc) (zeros omitted). Then v(a) — v(b) is the exact number of
distinct real roots between a and b (Ref. 2).

Newton’s Method. If x; is an approximate value of a root of f(x) then

one sets
w = 21 — [f(x1)/f (1)),

x3 = xp — [f(we)/f'(22)], - - -.

The sequence of numbers thus defined converges to a real root of f(z),
provided f(x;)f”'(z1) > 0 and it is known that z, lies in an interval con-
taining a root of f(z) but none of f’(z) or of f"’(x) (Ref. 2).

3. COMPLEX ROOTS
Let f(2) = an2" +---+ ao be a polynomial in the complex variable z,
z=x+ 1wyt = v/ —1. The coefficients are allowed to be real or complex.

If they are real, complex roots of f(z) come in conjugate pairs, z 4 yi, so
that the total number of nonreal complex roots is even.
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If f(z) is of degree 2, 3, or 4, explicit algebraic formulas for all roots are
available (Ref. 1).

It is proved in Galois theory that similar formulas for equations of
higher degree do not exist (Ref. 1).

Equations for Real and Imaginary Parts. Replacement of z by
x + 7y in the equation f(z) = 0 and equating real and imaginary parts
separately to zero leads to two simultaneous equations in the real variables
x, y. These can be solved by elimination.

ExampiLe. 22 —z-+4 1 = 0. Replacement of z by = + iy leads to the
equations 2® — 3zy® — 2+ 1 =0, 32%y —y* —y = 0. To find nonreal
roots, one assumes y > 0 and is led to the equations 82 — 2x — 1 = 0,
y? = 322 — 1. The first has one real root = 0.66. Hence 0.66 == 0.55¢
are the nonreal roots of the equation.

Application of Argument Principle. The argument principle, when
applied to the polynomial f(2), states that the total change in the argument
(polar angle) of the complex number w = f(z), as z traces out a simple
closed path (circuit) C, equals 27 times the number of zeros of f(z) inside
C (provided f(z) =0 on C). (See Chap. 7, Sect. 5.) The path C can be
chosen as a circle, semicircle, square, or other convenient shape, and the
variation of the argument of w can be evaluated graphically. One can pass
to the limit from a semicirele in order to find the number of roots in a half-
plane. This is the basis of the Nyqusst criterion (Chap. 21).

In general, no root can lie outside the circle with center at z = 0 and
radius 1 + (M/|a,|), where M is the largest of |ao|, |a1], -+, |@u_y]
(Ref. 2).

Hurwitz-Routh Criterion. This is a rule for determining whether all
roots of f(z) lie in the left half-plane (i.e., have negative real parts). For

a given sequence cg, €1, ***, Ca, **+, one denotes by A, the determinant
Cy Co 0 0 - 0
C3 Co g ¢ -+ O
Ak = ’
Cor—1 C2k—2 Cr
so that A; = ¢y,
: ¢t ¢ 0
€1 Co
Ay = A3 =]c3 ¢ ¢
€3 Co
Cs C4 C3

For a given polynomial f(z) = coz" + ¢12" ' + - -+ ¢, with real coeffi-
cients and c¢o > 0, one forms Ay, --

*, An_1, With ¢ replaced by 0 for
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k> n. All roots of f(2) lie in the left half-plane if and only if A; > 0,
Ay >0, -+, Ap_; > 0 (Ref. 3).

Graffe’s Method. Griiffe’s method is efficient for finding a complex root,
or successively all roots, of a polynomial f(z). For simplicity, suppose that
f(2) has no-repeated roots, as can always be arranged by the methods indi-
cated above (Sect. 1). One must further suppose that f(z) has a single root
ro of maximum absolute value; if this fails for f(2) it will hold for the new
polynomial ¢(z) = f(z + ¢) for all but certain special values of ¢. It is
necessary to have some rough idea of the argument of the root ry; for
example, if ry is real, to know whether it is positive or negative.

Starting with the polynomial f(z) = fi(2) = 2" + a;2" ! +---, one
forms f1(—2z). The product f1(z)f1(—2) contains only even powers of z,
hence is of the form f;(2)f1(—2) = fo(2?). Similarly, f3(z) is formed from
f2(2): f3(2%) = f2(2) -fo(—2), and the process is continued to form a se-
quence of polynomials fi(z) = 2" 4 ae®™! +---. (As justification note
that f; has roots which are the 2*th powers of the roots of f; that —ay is
the sum of the roots of fi, and hence that the ratio of —ay, to 7o2* approaches
1as k — ). One chooses a value z;, of the 2th root of —ay; the choice
of z; is made to agree as closely as possible in argument with the initial
estimate for the argument of 79. The successive values 2, 25, -+ - can be
expected to approach rq rapidly.

After the root of largest absolute value has been found, one could divide
out the corresponding factor and proceed to find the root of next largest
absolute value. In practice, it is generally more efficient to use an elabora-
tion of Griffe’s method (Ref. 7).
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1. VECTOR SPACES

Let I denote the rational number system, or the real number system, or
the complex number system; in the following, elements of F are termed
scalars and are denoted by small Roman letters a, b, ¢, - --. A vector space
V over F is defined (Ref. 9) as a set of elements called vectors, denoted by
small Greek letters «, 8, v, - - -, for which the operations of addition: « + 8
and multiplication by scalars: aa are defined and satisfy the following rules:

(i) For each pair a,8in V, a + Bisanelementof Vanda + 8 = 8 + «,

at+ @B+7v)=(+8)+r;
3-01
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(ii) For each « in V and each a in F, aa is an element of V and, for
arbitrary bin F and 8in V

ala + B) = ac + aB, (@ + b)a = aa + ba,
a(ba) = (ab)a, la = a;

(iii) For given «, 8 in V, there is a unique vector v in V such that
a + v = 3. In particular, there is a unique vector denoted by 0 such that
a+0=aforallainV,

When F is the real number system, V is called a real vector space; when
F is the complex number system, V is a complex vector space. The system
F can be chosen more generally as a field (Ref. 9). The vectors of me-
chanics in 3-dimensional space form a real vector space V. In terms of a
coordinate system, the elements of V are ordered triples (z, y, 2) of real
numbers; addition and multiplication by real scalars are defined as follows:

(@1, Y1, 21) + (%2, Y2, 22) = (1 + 22, Y1 + Y2, 21 + 22),
a(z, y, 2) = (az, ay, az).
A vector « is said to be a linear combination of vectors ay, - - -, a, if
a= g -+ apan

for appropriate choice of ay, - - -, a,. An ordered set {aj, - - -, a,} is said
to be independent if no member of the set is a linear combination of the
others or, equivalently, if

aap +- -+ apan =0

impliesa; = 0, ---, a, = 0. If the ordered set S = {ay, -+, @,} is inde-
pendent and « is a linear combination of its elements (is linearly dependent
on S), then the scalars a4, - -+, a, can be chosen in only one way so that
a = 2;0;0;.

If there is a finite set 8 = {ay,  * +, an} such that every a in V is linearly
dependent on S, then V is said to be of finite dimension. For the remainder
of this chapter, only vector spaces of finite dimension will be considered; this is,
however, not the only case of importance. If S = {ay, -, a,} is inde-
pendent and every « of V is a linear combination of these vectors, then S
is said to constitute a basis for V. Every finite dimensional vector space
has at least one basis, all bases have the same number, n, of elements; n is
the dimension of V. »

A subset W of V is said to be a subspace of V if, with the operations as
defined in V, W is itself a vector space. A subset W will be a subspace of
V if, whenever «, 8 are in W, a + 8 is in W, and aa is in W for every a in
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F. 1In particular, {0} is a subspace, as is V itself. The intersection (Chap.
1, Seet. 1) W 1 U of two subspaces of V is a subspace of V; it is the largest
subspace contained in both W and U. The union W U U is not usually a
subspace; the smallest subspace containing W and U is rather their (linear)
sum W -+ U, consisting of all vectors « + 3, @ in W, and 8 in U. If
W N U =0, then W 4 U is called a direct sum, and is often denoted by
W@®U or W+ U, in this case every vector in W -+ U is expressible
uniquely as « + 8, ain W, 8in U. Tor any set of vectors {ay, - -+, an},
the set of all their linear combinations constitutes a subspace, and the sub-
space is spanned by them. Every independent set is a subset of a basis.
From this it follows that, for each subspace W, there exists U (in general,
many) such that V is the direct sum of W and U.

2. LINEAR TRANSFORMATIONS

Let f be a transformation (function, mapping) (Chap. 1, Sect. 3) of
vector space V into a second space V’; f is said to be linear if for all «, 8,
a, b,

flaa + b8) = af(a) + bf(B).

The image of V under f, denoted by f(V), is the set of all vectors f(«) for
ain V; f(V) is a subspace of V'. If f(V) = V', fis said to map V onto V'.
The null space of f, denoted by N(f), is the set of all vectors « in V such
that f(a) = 0; N(f) is a subspace of V. If N(f) contains only the ele-
ment 0, f is said to be nonsingular; this is equivalent to the condition that
f be one-to-one (Chap. 1, Sect. 3); a nonsingular transformation is termed
an somorphism of V onto f(V). The rank of f is defined as the dimension
of f(V); this equals the dimension of ¥ minus that of N(f). The mapping
f is nonsingular if and only if its rank is maximal, that is, equals the di-
mension of V. If W is chosen so that V is the direct sum of N(f) and W,
and W has dimension greater than 0, then the restriction of f to W is a
nonsingular mapping of W onto f(V), that is, an isomorphism of W onto
f(V). If f is an isomorphism of V onto V’, then the inverse transformation
fT = f~!is a linear transformation of V' onto V.

The set of all linear transformations of V into V' becomes itself a vector
space over F, if addition and multiplication by scalars are defined by the
rules: .

f + g is the transformation such that (f + g)a = f(a) + g(e) for all «
inV;

af is the transformation such that (af)a = a[f(a)] for all @ in V.

If f maps V into V' and g maps V' into V"', following f by ¢ defines the
composite transformation fg of V into V”; explicitly, fg(a) = ¢lf(@)]. If f,
g are linear, so also is fg (Refs. 2, 8, 9).
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3. COORDINATES

Let {ay, + -, a,} be a basis for the vector space V, so that every vector
e in V ean be written uniquely in the form Za,e;. The a; are the coordi-
nates of « relative to the chosen basis; the a; are also termed components,
but this word is sometimes used for'the terms a;x;. The choice of a definite
basis is often necessary for computation. With a fixed basis understood,
one can replace each vector « by the corresponding n-tuple (ay, - - -, a,);
then

(a17 Tty a'ﬂ) + (bly ] bn) = (al + bl) e, an+ bn)y
c(ala Ty a‘n) = (cal: Ty Can)'

A basis that is natural at one stage of a problem may not be the most
advantageous at a later stage, so that one must be prepared to change
bases. ~

If a basis a;, -+, a, is chosen for V and a basis o'y, -+, o, for V’,
then each linear transformation of V into V' can be assigned coordinates
as follows. The transformation f is fully determined by the images f(«;)
of the basis elements for V.. If f(a;) = Zja;;¢';, then f may be characterized
by the n-m scalars a;;, where¢ =1, -+« n,7 = 1, -+, m. These numbers
are usually thought of as arranged in a rectangular array, or ‘matrix

apy G2 ¢ Qup
agy Qg2 -+ Oy

A= = (a:;)..
dnl Gpz *°° Qup

One terms A the matrix representing the transformation f relative to the
given bases in V and V',

If ¢ is a second transformation from V into V', with matrix B = (by;),
it is clear that the transformation f + ¢ will have the matrix (a;; + b:).
Accordingly, one defines the sum of two n by m matrices as follows:

(a:i7) + (bij) = (as; + byy).

Similarly, the product cA, which represents cf, is defined as the matrix
(caij).

Now let f be a linear transformation of V into V', ¢ a linear transforma-
tion of V' into V"', where V, V' have bases as before, and V'’ has a basis
'y, -+, &'p. Relative to these bases, f is represented by an n by m
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matrix 4 = (a;;), 9 by an m by p matrix B = (b;;), fg by an n by p matrix
C = (¢ij). Since

(f9) (@) = 20 2 aibje’s
P

one finds

m

Cir, = D Qihi;
at

correspondingly, one defines the product of two matrices A and B (where
the number of columns of A equals the number of rows of B) to be the
matrix C = AB, where the elements c¢;; of C are given by the above “row-
by-column” rule. Multiplication of matrices is not commutative, but is
associative and distributive: A(BC) = (AB)C, A(B + C) = AB + AC,
(4 + B)C = AC + BC.

If @ = Za;e; is a vector with coordinate representation (ay, - - -, a,), one
can regard the n-tuple as a 1 by n matrix. The product a4 can then be
evaluated as that of a 1 by n matrix and an n by m matrix. The result is
the 1 by m matrix

n n
ad = (Z aia?l, vy, Z aiaim)

=l =1

which represents f(a):

fla) =f (Z aiai) = Z aif(a;) = E E a;a;50
= i < > aijai> o

=1 \i=1

This shows that, when bases are chosen in ¥ and V’, each matrix A is the
matrix of a linear transformation (Ref. 2, 9).

4. ECHELON FORM

The matrix 4 associated with a linear transformation f from V to V’
can be given an especially simple form by suitable choice of basis for V,
for V', or for both. We consider the effect of a change of basis for V.
Every change of basis for V can be effected by a sequence of elementary
transformations of the following types: (1) replacement of «; by a scalar
multiple ca;, ¢ #= 0; (2) renumbering, interchanging «; and «;; (3) adding to
a; some multiple of a;, 7 # ¢, so that «; is replaced by «; + ca; (and «; is
left unchanged). The effect of each transformation is to carry out the
analogous operation on the rows of the matrix 4 = (a;;). Thus (1) multi-
plies each element of the ¢th row by ¢, (2) interchanges ¢th and jth rows,
(8) replaces the ¢th row by (au + caj1, ***, Gim + €Ajm).
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A matrix is said to be in (strict) echelon form (Ref. 9) if:

(i) The leading element (first nonzero element) in each nonzero row ap-
pears farther to the right than that of any preceding row;

(ii) The leading elements are all 1;

(iii) Only zeros appear in the same column with a leading element;

(iv) All zero rows (if any) appear at the bottom.
By a zero row (or column) is meant one consisting wholly of zeros.

ExamprLE. The following matrix is in echelon form.

o O O O
o o O =
S O o W
S O = O
S = O O
S N NN >

Each matrix can be reduced to echelon form by elementary transforma-
tions on its rows, as follows:

Step 1. If the first column is a zero column, leave it untouched and
proceed to the matrix formed by the remaining columns. If the first
column is not a zero column, permute rows so that a;; # 0. Dividing
this row by ay; gives a new matrix with a;; = 1. Subtracting suitable
multiples of this row from the other rows makes all a; = 0 for ¢ # 1.
The matrix now has a first column which is a zero column, or else it has
all zeros except for a 1 in the top position. Leave the first row and column
untouched and proceed to the matrix formed by the elements not in the
first row or column.

Step 2. TRepeat this process as long as poss1ble The resulting matrix
will satisfy (i), (ii), and (iv).

Step 3. To obtain (iii), subtract suitable multiples of each row from
earlier rows to convert the elements in these rows above the leading ele-
ment of the given row into zeros. The result may be stated as follows:

Every matriz is row-equivalent to an echelon matriz and (it can be shown)
to a unique echelon matriz.

Application to Systems of Equations (Ref. 9). A system of m
linear equations in » unknowns

n
Zaiij'——ci (i‘:l)"';m)
j=1

can be replaced by a single matrix equation

AX = C,
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where A = (a;;) and X, C are column vectors:

X C1

Tn Cm

Let B be the augmented matrix of the system, obtained by adjoining —C
as (n + 1)st column to A. The usual manipulations of equations employed
to successively eliminate (so far as possible) the unknowns xy, xq, - - -, z,
correspond to elementary transformations on the matrix B. If the result
were the echelon matrix of the above example, one would have obtained
the equivalent system:

x2+3x3 +5=0
T4 +7=0

Since z;, 3 do not-appear in leading terms, they can be assigned arbitrary
values; the general solution can be obtained immediately from the given
equations:

1 arbit., To = —'31153 — 5, T3 arbit., Ty = —7, Ty = —2.

If a row (00 - - - 01) had appeared, there would be an equation 1 = 0, as a
consequence of the original system, which would therefore be inconsistent
and have no solution.

5. RANK, INVERSES

The rank of a linear transformation f of V into V’ was defined (Sect. 2)
as the dimension of the image space f(V). If f has matrix 4, then f(V) is
the row-space of A; that is, the subspace of ¥’ spanned by the vectors con-
sisting of the rows of A. The rank of A is defined as the dimension of the
row-space of A ; hence the rank of A equals the rank of f. It can be shown
that the rank of 4 also equals the dimension of the column-space of A.
The rank is unaltered by elementary transformations and can be deter-
mined by inspection for an echelon matrix, where it is simply the number
of nonzero rows.

Let f be a one-to-one linear transformation of V onto V’, so that f has a
linear inverse f~! (Sect. 2). The spaces V, V' must have the same dimen-
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sion m and f, f~! are represented by nonsingular square matrices A, B such
that AB = BA = I, where

0

10 -0
I=1,=

00 1

is the m by m identity matrix. If A is an arbitrary square nonsingular
matrix, there exists a unique inverse A™! such that AA~ = I (which im-
plies A7'A = I). Hence B must be A™'. The echelon matrix for a square
nonsingular matrix A is I; the inverse A™! may be obtained by applying
to I the same sequence of elementary transformations that carry A into
its echelon form I.. The inverse has the properties

(A)™" = ¢ 1A, (AB)~' = B4}

6. DETERMINANTS, ADJOINT

By a permutation p of the set of integers 1, 2, - - -, m is meant a function
p:k — k' = p(k) which is a one-to-one transformation of this set onto
itself (Ref. 2). Tach such permutation is classified as even or odd according
as the polynomials in m variables

P =] (@ — @, P = I<I (@pry — Tpy)

E<i k<1

are the same or negatives of each other.
ExampreE. If m = 3, and p(1) = 3, p(2) = 1, p(3) = 2, then p is even,
since

(1 — 22) (1 — x3) (T2 — @3) = (x3 — 21) (T3 — 22)(T1 — X2).

One denotes by sgn p the value 1 if p is even, the value —1 if p is odd.
The determinant (Refs. 1, 9) det A of a square m by m matrix 4 = (a;;)
is defined to be the scalar

det A = 2 sgn p-aipy G2p@ *** *Ampem

Y4
where the sum is over all permutations p of 1,2, ---, m. If A is singular,
det A = 0. For nonsingular A, det A > 0 and det A is (—1)* times the
product of the scalars ¢ appearing in the elementary transformation of type

(1) (Sect. 4) used in reducing A to the echelon form I, where h is the num-
ber of transformations of type (2).
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Let A;; denote the submatrix of A obtained by deleting the ¢th row and
Jth column. Then for any fixed 7,

det A = Z (—1)"+ja,-j-det~ Aij;
i=1
there is an analogous result for expansion according to a fixed column j.
One calls det A;; the minor of a;;, and the expansions of det A are called
expansions by minors.

ExAMPLE.
a1 G122 413

Qza Qg3 a2; Q23 a21 Qo2
dg1 Q22 Q23 | = a1 — Q12 + a3

azs  A33 a31 033 azy Qagg

a31 azz ass
@11(@22a33 — A23032) — G12(A21033 — A2303;)

4 a13(ag1a32 — a90a3:).

The adjoint (adj) A of a square matrix A is the matrix B = (b;;), where
bij = (=1)"* det 4;;
(note the reversal of indices). One has the rule

cadj A-A = (det A)-T
and, if det A # 0,
A7 = (det A)71-adj 4,

adj A = (det A)-A7L.
CramER’s RuLe. If det A £ 0, the system

I

m
> aim; = ¢; G=1---m),
j=1

has a unique solution
det A(z)
xp = —
det A
where A(Z) is the matrixz oblained from A by replacing the i-th column by

c1, **y Cn (Ref. 2, 9).
7. EQUIVALENCE

Let f be a linear transformation of V into V’. It has been seen (Sect. 4)
that the matrix A for f can be put in echelon form by a suitable change of
basis in V. If V' is not the same space as V, one can further simplify 4
by independently changing the basis for V’'. This effects elementary trans-
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formations on the columns of A; by successive subtractions of multiples of
earlier columns from later ones, followed possibly by a renumbering of the
basis, A can be reduced to the form

(0 o)
J, =
0 0

where I, is the r by r identity matrix (Sect. 5) and the 0’s stand for rows
and columns consisting wholly of zeros; J, is a rectangular » by m matrix,
just as was the given matrix A. For the matrix in echelon form in the
example of Sect. 4 the matrix J, would be

100000
010000
001000

000 0O0OTO

The effect of a change of basis in V is to replace A by PA, where P is a
nonsingular n by n matrix; the effect of a change of basis in 7’ is to re-
place A by AQ, where @ is a nonsingular m by m matrix. The matrix B is
said to be equivalent to matrix A if B = PAQ for some nonsingular P and
Q. This is a proper equivalence relation (Chap. 1, Sect. 5). The reasoning
" given above then gives the conclusion: Every A is equivalent to a unique
matrix of the form J,. In other words, the matrices J, (for various r, m,
and n) are a set of canonical forms under equivalence (Ref. 9).

8. SIMILARITY

One now considers the possible matrices A representing a linear transfor-
mation f of the vector space V into ifself. The field F of scalars will be
assumed to be the complex number system. Since V' = V, one can no
longer change bases in V and V’ independently. Indeed, let o/; = Z; pijey
be equations defining a new basis oy, ---, &, in V. Then P = (p;;) is a
nonsingular matrix with inverse P~ = (¢;;), and ar = Zj qene/s. Let f
have the matrix A = (a;z) relative to the basis «;, so that f(e;) = 2 ajpes.

Then
@) = 2220 20 piiainqene’s,
h 7 k

and f has the matrix PAP ™! relative to the basis o/y, -+ -, @’,. The square
matrix B is said to be similar to square matrix 4 if B = PAP™" for some
nonsingular matrix P. Hence change of basis in V replaces the matrix of
f by a similar matrix. Similarity is an equivalence relation (Chap. 1, Sect.
5) in the class of square matrices (Ref. 9).

If A can be reduced to a similar matrix of sufficiently simple form, most
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of the important properties of A can be read off. The ideal situation is
that in which A is similar to a diagonal matrix; that is, a matrix (a;;) in
which a;; = Ofor? # j. Unfortunately, not every A is similar to a diagonal
matrix, and the various canonical forms are approximations to the diagonal
form.

If A is similar to

M O - - 0
. 0O XN - - O
B = diag (A1, =+, M) = ,
0 0 - -\
then in terms of the new basis a4, - - -, a, associated with B one has

f(al) = alB = )\1051, ety f(an) = O(,,B = )\nan.

In general, if a vector a £ 0 is such that a4 = Aa for some scalar A, then
A is called an eigenvalue (characteristic value, latent root) of A, and « is
called an eigenvector belonging to A. The characteristic polynomial for A is
the polynomial ¢(z) = det (xI — A); this is a polynomial

@) = co + e + -+ -+ cp2”

of degree n, and its n roots (real or complex) are the eigenvalues of 4. In

particular,
(_1)"60 =detA =N+ Ag - -0 - An,

—Cpg =11 F A G = A+ Ny = traceof A4, and ¢, = 1.

The HamiutoN-CayLey Turorem (Ref. 9) states that A satisfies its char-
acteristic equation:

¢(A) = COI'I'ClA +...+ ann =0.

If the roots of ¢(x) are distinct, then A is similar to B = diag (A, - - -, \p).
In fact, let ¢(x) be a factor of the kth power of a polynomial ¥(z), whose
roots are the distinet numbers Ay, -+, Ap; if Y(4) = 0, then A is similar
to a diagonal matrix; if ¢(4) # 0, then A is not similar to a diagonal
matrix.

In the general case of repeated roots, the matrix A is similar to a matrix
B in Jordan normal form; that is, a matrix (in partitioned form, see Ref. 9,
Sect. 2.8)

B = diag (By, --+, B;s) =

.........
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where the B; are square matrices of form

A 10 - 0

0 N1 - 0
B; =
0 0 - A1
0 0 - 0 A
and Ay, - -+, \; are not necessarily distinct. In the matrix B each charac-
teristic root \ appears on the diagonal a number of times equal to its mul-

tiplicity.
An alternative rational canonical form for matrix A has the form B =
diag (By, -+, Bp), where B; has form

o 1 - - 0
0 0 0
o 0 -0 1
—Cip —Cg2 - —Ciy

If A has rational (real) entries, the B; can be chosen so that the c;; are
rational (real).

If A is a real matrix, the eigenvalues A need not be real but, since ¢(x)
has real coefficients, they will occur in conjugate complex pairs. In this
connection it is useful to note that the matrices

(rew 0 ) (r cos@ —rsin 0>
. ’

0 re?® rsing  rcosf

are similar.

When A is of small degree or is otherwise especially simple, its eigen-
values and eigenvectors can be found by explicit calculation from the defi-
nitions given above; often they can be found from the physical interpreta-
tion of the problem. Determination of eigenvalues is a problem in solving
an algebraic equation (Chap. 2), but other methods are available (Ref. 4).
If X is an eigenvalue having absolute value greater than that of all other’
eigenvalues and « is any reasonable approximation to an eigenvector be-
longing to A (e must not lie in the subspace spanned by the eigenvectors
of the remaining eigenvalues), then the sequence a = ay, ag, -+, an, +--
where a; 11 = o;4/c; and ¢; is the first nonzero coefficient of o; will con-
verge to an eigenvector for A.
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9. ORTHOGONAL AND SYMMETRIC MATRICES

Let V be a real vector space, with basis ey, - -, an, so that each vector
has coordinates (a;, : -, an). The inner product (Ref. 9) (a, 8) of the
vectors a = (ay, **+, an), B = (by, - - -, by) is defined as the scalar

{a, B) = a1by ++ -+ anbn.

The norm of « is the scalar |a| = (a, @)*%. The angle 6 between «, 8 is de-
fined by the equation

(o, B) = |e||B]cos 0.

These definitions are relative to the given basis but are unaffected if a
new orthonormal basis is introduced; that is, a basis «'y, - - -, &/, such that
(s, @';) = 8;; = 1lor0accordingas¢ =jore¢ =g If

LA JP
o= Ea’iJaJ)
J

then the matrix A = (a;;) has as its inverse the transposed matrix AT =
(bs;), where b;; = aj;; that is, AAT = I. A matrix with this property is
called orthogonal. Since det A = det A”, and det A-det AT = det I = 1,
one concludes that det A = 1. When det 4 =1, A is called proper
orthogonal and is a product of rotations; if det A = —1, A4 is a product of
rotations and one reflection, so that orientation is reversed. The eigenvalues
of an orthogonal matrix all have absolute value equal to 1.

A real matrix A = (a;;) is termed symmetric if A = AT; if, further, the
quadratic form Z;; a;zx; is >0 except when z; ==z, = 0, then 4
and the quadratic form are said to be positive definite. The z’s can be
interpreted as coordinates of a vector a with respect to a given basis; then
;505025 = (ed, ). If a new basis is chosen (not necessarily orthonor-
mal), the form is replaced by a new quadratic form. When A is positive
definite, the new basis can be chosen so that (a4, «) has the form Z; z,2;
this is equivalent to the statement that A can be written as PP?, where P
is nonsingular. If A is symmietric, but not necessarily positive definite,
the new basis can be chosen so that (aA4, «) has the form

n? oty =y ==y,

where the numbers 7, s are uniquely determined by A. This is equivalent
to the statement that there exists a nonsingular matrix P such that PAPT
= B, where B = (b;;), b;j = 0 for ¢ = j, b;j = 0 or &1 for ¢ =j. (One
terms B congruent to A.)

The eigenvalues of a symmetric matrix A are all real, and A is similar
to a real diagonal matrix C; indeed C = PAP™', where P may be chosen
to be orthogonal (Ref. 9).
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An analogous theory holds for complex vector spaces. The inner product
is defined as

(a; :3) = algl +--+ anzn (51, = conj. of bi);

so that (@, a) = Z;|a;|? > 0; the norm of « is defined to be (a, a)*.
Orthogonal matrices are replaced by unitary matrices, defined by the con-
dition AAT = I, where the bar denotes replacement of each entry by its
conjugate. Symmetric matrices are replaced by Hermitean matrices, de-
fined by the condition A = AT.

10. SYSTEMS OF LINEAR INEQUALITIES

Let V be a real vector space with fixed basis {aj, -+, o} as in Sect. 9,
so that each vector « has coordinates (a;, : -, a,). If the vector g has
coordinates (by, - - -, b,) then one writes

B>aora<B if a;<b; (@G=1,---, n),
BZaora=4g if a; =0 (1"=1;"')n):
B>aora<B if a<B but a4

The relation < is a partial order; the relations < and < are antisymmetric
and transitive but not reflexive (Chap. 1, Sects. 4 and 7). A vector « is
said to be

non-negative if & = 0,
positive if @ > 0,
strictly positive if o > 0.

The set @ of all non-negative vectors is called the positive orthant in V.
A positive vector « such that a; +---+ a, = 1 is called a probability
vector.

For fixed @ and real number k, the set of all vectors & = (x1, + -, z,)
such that

(e, ) +bk=a@1 4+ -+ axn+£=0

is a closed set (Chap. 1, Sect. 8) called a half-space 3¢. For example, the
solutions of 2x; 4+ 3z — 6 = 0 form the half-space (half-plane) in two-
dimensional space, as shaded in Fig. 1. Similarly, the solutions of (e, &) 4+
k > 0 constitute an open half-space 3¢,. The solutions of («, &) +% = 0
constitute a hyperplane 11 which is the boundary of both 3¢ and 3¢,. By a
system of linear inequalities is meant a set of relations

(0{,‘, 5) + kaKO:
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where the index « ranges over a given set (possibly infinite), and for each «,
Ry is one of the relations >, =, =. Tor evample,

2x1+3x2—6;0, x1+5x2>0, x1+x3=0

is a system of linear inequalities. By a solution of the system of inequali-
ties is meant a vector £ = (x4, - - -, x,) which satisfies all the inequalities.

7

)

Fic. 1. Half-space in two dimensions.

x2

With each inequality is associated a half-space (or hyperplane) 3¢,. The
set, of all solutions of the system is the intersection of all 3¢,.

Convexity. The vector a is said to be a convex combination of vectors
ag, *v ey oy if

a=p1a1+"'+pmam, pl+"'+pm=1, pzé()@:l,’;m)

A nonempty set K in V is said to be convex if it contains all convex combina-
tions of its vectors. If K is interpreted as a point set in n-dimensional
space, K is convex if and only if, for each pair of points «;, @ in K, the
line segment joining «; to a, lies in K. (See Fig. 2.) A half-space 3¢ is
said to be a support for a convex set K in V if K is a subset of 3¢. If,
moreover, 11 contains » — 1 independent vectors of K, 3¢ is called an ex-
treme support for K.

Let T be a subset of V. The set of all convex combinations of vectors
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in T is a convex set, called the convex closure of T. A convex set K is said
to be finitely generated if it is the convex closure of a finite subset of K.

x2

F1a. 2. Convex set.

A set T is said to be bounded if, for some constant M,
lay|+++-+|a,| < Mforall @in T.

DousLeE DEescriprion TaeoreEM. If K is a finilely generated convex set
in V, then K is the intersection of a finite number of supports; moreover, if K
spans V, then K is the intersection of its extreme supports. Conversely, if the
sntersection of a finite collection of half-spaces is nonempty and bounded, then
it 1s finitely generated.

This theorem, when formulated in algebraic terms, is known as Farkas’
Lemma:

Farkas’ LEMMA (strong nonhomogeneous form). Let V be n-dimen-
sional real vector space, let V' be m-dimensional real vector space; fixed
bases are assumed chosen in each. Let A be an n by m matrix, let § be a
vector in V', let k be a scalar, and suppose that there is at least one vector
¢ in V such that ¢4 = 8. Then a vector a in V will satisfy the condition
(a, ¢) = k for all ¢ for which ¢4 = 6 if and only if there exists a vector
v = 0in V’ such that « = vA” and (v, 8) = k.

Farkas’ LEmMA (weaker homogeneous form, &k = 0, § = 0). Let A be
an n by m matrix. Then a vector « in V will satisfy the condition
(a, ¢) = 0 for all ¢ for which ¢4 = 0 if and only if there exists a vector
v = 0in V’ such that « = yAT.

Farkas’ Lemma can be used as a foundation for the Minimax Theorem in
game theory and for the Duality Theorem in linear programming. These
theorems can also be deduced from the following one:
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TuroreM. Let A = (a;;) and B be n by m matrices with a;; > 0 for all 4, 5.
Then there exist probability vectors £ in V and n in V' and a unique scalar k

such that
(kA — By =20 and k4 — B) £0;

in the first inequality 5 is regarded as an m by 1 matrix.
For all of Sect. 10, see Refs. 5, 6, 9.
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1. DEFINITIONS

By a difference equation is meant an equation relating the values of an
unspecified function f at z, x + h, « + 2k, - -+,  + nh, where A is fixed.
For example,

(1) fle+3) —flz 4+ 2) —2of@ + 1) — 2f(@) = 2?

is a difference equation, in which 2 = 1, n = 3. The variable « will gen-
erally be assumed to vary over the discrete set of real values zo 4+ ph
(p =0, %1, £2, --+), where x¢ is a constant. By proper choice of origin
2o and scale one can make zp = 0, A = 1, so that x varies over the integers
0, =1, &2, ---. In the subsequent discussion, this simplification will be
assumed made, so that = varies over the integers and the difference equa-
tion thus relates the values of f at z,  + 1, .-+, * + n. TFor the case
when z varies continuously, see Remark at the end of Sect. 4. The values
of f are assumed to be real, although much of the theory extends to the
case in which f has complex values.
401
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A general difference equation is constructed from a function y(z, yo, y1,
_ +++, Yn) of the integer variable z and the n + 1 real variables yo, - -, ¥n.
The difference equation is the equation

@) Y(z, /@), f@+ 1), -+, f@ +n)) = 0.

By a solution of the difference equation is meant a function f which satisfies
it identically. When the equation takes the form

@) @ +mn) = ¢, f(@), -, fl+n—1)

and ¢(x, ¥o, + * *, Yn—1) is defined for all values of z, yq, - - -, yn_1, €q. (3) is
simply a recursion formula. If f(0), f(1), - -+, f(n — 1) are given arbitrary
values, then eq. (3) determines successively f(n), f(n + 1), - - -; thus there
is a unique solution for x = 0 with the given initial values f(0), f(1), - - -,
Jn = 1),

The first difference of f(zx) is Af = f(x + 1) — f(z); the second difference
is A% = A(Af) = fx +2) — 2f(x + 1) + f(x); the kth difference is A*f.
A difference eq. (2) can be written in terms of f and its differences. For
example, eq. (1) is equivalent to the equation

(1) A 4+ 2A% 4+ (1 — 2)Af — B + 2)f = 22

Conversely, an equation relating f, Af, - - -, A" can be written in form (2).
Thus, eq. (2) is the general form for difference equations, and this form
will be used throughout this section, in preference to an equation relating
the differences of f.

The order of the difference eq. (2) is defined as the distance between the
most widely separated x-values at which the values of f are related. If ¢
definitely depends on f(z) and f(xz + n), then the order is n. However,
the order may be less than n. For example, the equation

4) fe+4) —2f@+3) —fz+1) =0

has order 3, since the most widely separatedv values are x + 1 and z 4 4.
The substitution g(xz) = f(z + 1) reduces this to an equation relating g(z),

gz + 2), gz + 3).
OreraTOR NoTaTION. If 3 is a function of z, one writes

(5) Eky = ?/(x + k) (k = 0) 1; 2; o ')'

Thus E% = y(z), E'y = Ey = y(z + 1). The difference eq. (2) can thus
be written

(2/) ¢(x7 Y, Ey} E2y7 tt E"y) = 0.
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2. LINEAR DIFFERENCE EQUATIONS

By a linear difference equation is meant an equation of form

6) anfx+n) + anafle+n—1) 4+ aif@ + 1) + aof(z) = v(),

where ag, -+, an, v(x) are given functions of the integer variable x. In
terms of the operator F of Sect. 1, the equation can be written:

(6" anl™y +- -4 a1By + agy = v(x),

where y = f(x). It can be written more concisely as follows:

) Vv(B)y = v(x),

where Y(I) is a linear difference operator:

8) Y(E) = a, " +-- -+ &, E + ay.

If v(zx) = 0, eq. (6) is termed homogeneous; otherwise it is nonhomogeneous.
In case ay # 0, a, = 0, the equation is of ordern. Incaseay=q;, =:--=
tn—1 = 0, but a,,a, = 0, then it is of order n — m; the substitution g(x) =
f(x — m) then reduces eq. (6) to a linear equation for g of form (6), with
nonvanishing first and last coefficients.

Linear Independence. Let y1(z), - - -, yp(2) be functions of = defined
fora < x < b. The functions are said to be linearly independent if a relation

biy1(@) + -+ -+ bpyp(x) =0

with constant by - - -, by, can hold only if by = by =-+-=b, = 0. Other-
wise, the functions are said to be linearly dependent.

General Solution. Let the difference eq. (6) be given, with v(x) = 0
and ag(x)a,(x) = 0 for @ < z < b; all coefficients are assumed defined for
a <z <b. Then the equation has order n, there are n linearly inde-

pendent solutions y,(z), - - -, ya(x) for ¢ < & < b and
9) y=cn(@) +- o+ eapn@), e <z <D,
where ¢y, - -, ¢, are arbitrary constants, is the general solution; that is,

all solutions are given by eq. (9). If »(x) = 0, but the other hypotheses
hold, then the general solution has form

(10) -y =) o eayale) + Vi),

where V(z) is a solution of the nonhomogeneous equation and ¢y, (x) +
-+ cnYa(x) is the general solution of the related homogeneous equation,
that is, the homogeneous equation obtained by replacing v(z) by 0.

- Exampre. The functions y; = 1, yo = x are linearly independent solu-
tions of the equation (B? — 2E + 1)y = 0, so that y = ¢; + corx is the
general solution; y = 2°7" is a solution of the equation (B — 2E + 1)y =
2271 50 that ¥ = ¢; + cor + 2° is the general solution.
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3. HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT
COEFFICIENTS

The equations considered have form

(11) Y(E)y =0,

where

(12) Y(E) = a,B" +- -+ a1 By + ay,

the coefficients a,, ---, ap are constants, and a¢a, = 0. Associated with

eq. (12) is the characteristic polynomial
‘/’()‘) =g\ 4+ aur+ a

in the complex variable . The equation

(13) y(A) =0

is an algebraic equation of degree n, called the characteristic equation or
auxiliary equation associated with eq. (11). The characteristic equation
has n roots Ay, - -+, A, called characteristic roots. (See Chap. 2.) These
may be real or complex; since the coefficients are assumed real, the complex
roots come in conjugate pairs.

From the set of characteristic roots one obtains a set of » solutions of the
difference eq. (11) by the following rules:

I. To each simple real root \ one assigns the function \%;

II. To each real root X of multiplicity % one assigns the & functions \*,
x)\z, e, xk—l)\x;

IIT. To each pair of simple complex roots « -+ B¢ = p(cos ¢ == < sin ¢)
one assigns the functions p® cos ¢z, p° sin ¢z;

IV. To each pair of complex roots « == 8¢ = p(cos ¢ == 7 sin ¢) of mul-
tiplicity & one assigns the 2k functions

p% Ccos ¢x, xp® cos ¢, - -+, ¥ 1p% cos ¢z,
% sin ¢z, xp® sin ¢z, - - -, ¥ 71p% sin z.
In all one obtains n functions y; (x), - - -, y»(x) which are linearly independ-
ent solutions of eq. (11) for all z, so that
y = c1(2) +- -+ cayal®)

is the general solution.
ExampLe. (E* — 8E® + 25E% — 36E + 20)y = 0.
The characteristic equation is

At — 8\3 4 2502 — 36A + 20 = 0.
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The roots are 2, 2, 2 4= 7. Hence the general solution is
y = 27(cy + cox) + 57/% (c3 cos ¢z + ¢4 sin ¢z),

where ¢ = arctan 4.

REMARKS. The variable x has heretofore assumed only integral values.
If z is allowed to take on all real values, then the difference equation be-
comes a functional equation. The methods of this section are still applica-
ble and provide the general solution of eq. (11) subject only to the follow-
ing two modifications: (a) the arbitrary constants ¢;, cg, - -+ may be re-
placed by arbitrary periodic functions of z, of period 1; (b) if A is a negative
characteristic root of multiplicity %, the corresponding solutions become
(—=N)? cos mx, £(—N)® cos 7z, - -+, T¥TI(—N)® cos ww.

4. NONHOMOGENEQUS LINEAR EQUATIONS WITH CONSTANT
COEFFICIENTS

The equation considered is
(14) Y(B)y = v(=),

where ¢(I) satisfies the same conditions as in Sect. 3. By the rule stated
at the end of Sect. 2, the general solution of eq. (14) has the form

(15) Yy = clyl(x) 44 Cn?/n(x) =+ V(IL‘),

where V() is a particular solution and the other terms are the general solu-
tion of the related homogeneous equation ¢(E)y = 0.

The procedures for finding the particular solution V(x) ecan be described
concisely by means of an operational calculus which parallels that used for
differential equations (Chap. 8). The operators ¢(E) with constant coeffi-

_cients ean be added, subtracted, multiplied, and multiplied by constants
just as polynomials. The operators can be converted into operators x(A)
by the relation

(16) A=FE—1.

For example,
E?—1=(A+1)2—1=A%+2A.

The powers A, A% .-, A* are the first, second, - - -, kth difference, as de-
fined in Sect. 1.
If y = V(x) is a solution of eq. (14), one writes

1

o) v(z) = [1P(E)]_lv(x)-

17) V) =
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TaBLE 1. RuULES FOR PARTICULAR SOLUTIONS

No. Y(E) v(x) (B
1. W(E) cwi(x) + cawa(x) 5 €1, c2 const.  calY(E)] o1 + col ()] e
) 1 1
2. Yi(EWo(E) v(@) ) (m ”)
3.A=E-1 @),z =0, %1, --- A_lv=x§v(k)
k=0
LA =B 21 ), =0, L, o At =T 400
k=0 s=l
o ) 2\ @—n4+Dl _m\ [ =
5. AT=(E-1) (n)_ nl A (n)—(n-i-?')
x a1
6. Y(E) a*u(x) a Val) u(x)
" Ll
7. W(E) @, $la) # 0 W)
— a)'(E 7, ¢a) = 0 o
8. (E — a)'¢p(E) a’, ¢la Ha)k!
9. ¥(2) au(z), Y(a) # 0, i a poly-  @?lp(a) + 17 (@A +---

nomial of degree s
as
+ % p@aTu(a),

pA) = 14M)

10. (E — a)'¢p(E) a*u(x), u(z) a polynoial of a**[q(a)A—*
ola) #= 0 degree s a
@A

+ & (@A Hu)

q\) = 1/6(N)

11. E—a v(x) ; a* 1A a =)

12. (E — a)* () @ A(a )

13. (B —a)*+ 4 u(z) (p"~'/B)lsin (¢pz — &)
o+ 18 = p(cos ¢ A=Y p== cos ¢z v)
+ 7 sin @) — cos (¢ — @)+

A=Yp— sin ¢z v))
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Thus the inverse operator [(£)]™}, when applied to v(z), yields one solu-
tion of the eq. (14). The rules for finding particular solutions can now be
summarized in a table, which evaluates [y(%)]™v for various choices of
and ». This is carried out in Table 1. The last column gives one choice
V(x) of [W(E)]'v; the general solution is given by eq. (15).

The binomial coefficient () of Rule 5, Table 1, is defined forn = 1,2, - ...
When n = 0, it is defined to equal 1, and Rule 5 remains valid. Corre-
sponding to this inverse rule is the direct rule:

(18) AQ) =GI), 0<r=n

=0, r>n.
A general power.of z can be expanded in terms of these coefficients:
(19) " = TN +- -+ T () (),

where the T’ are Stirling numbers of the second kind. They are tabulated
on page 170 of Ref. 2. If the polynomial u(z) is expanded in terms of the
coefficients by eq. (19) and Rule 5 or eq. (18) is applied, then Rules 9, 10
are easier to use.

A general expression 1/¢(F) can be regarded as a rational function of &
and expanded in partial fractions, just as if E were a numerical variable.
Rules 11, 12, 13 then permit evaluation of the terms. Tor example,

1 1
“@-n@E_2"®" <E—2—E— 1>U(x?
= 227IA7L(27%) — ANy,

7 _3m52'®

Rule 12 is needed for multiple roots. Rule 13 is needed for complex roots;
it can be generalized to take care of repeated complex roots (Ref. 2).

5. LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS

The general solution of the first order linear equation
(20) [E —p@)ly =v(@), =z2aq,

where p(z) #0forz = q, is

B z—1 ’U(S)
(@1) Y = q(@) [c+ T o 1)],

I

papl@+1)---plx—1), z>a

=1, T = a.

(22) q(@)
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Laplace’s Method. For equations
(23) [an@)E" +- -+ a1(®)E + ao(@)ly = 0

with polynomial coefficients, one seeks a solution

b
(24) | y(zr) = f =~ Y(t) dt,

where a, b, and v(f) are to be determined.

Let (z), denote n!(7), so that (x), = 2(x — 1) -+ (x —n 4+ 1) forn =
1,2, ---,and let (x)o = 1. It follows from eq. (19) that an arbitrary poly-
nomial can be expressed as a linear combination of the polynomials (x),.
Hence the coeflicients ar(x) can be considered as linear combinations of the
(®)n. Now by integration by parts one obtains from eq. (24) the relation

(25) (+m —1)nEy

m ‘ b
— [Z (—1)s+1(x +m — l)m_stx—l-l—st—l{tnv(t)}]

s=1

b
+ (=)™ f EEm=ipmimy(6)} dt,
where D°* = d°/dt°’. Hence the difference eq. (23) takes the form
b
(26) [F(z, v, ). + f G, ¢) dt = 0.

The function »(f) is chosen so that G(v, t) = 0. In fact, the equation
G(v, t) = 0 is usually a homogeneous linear differential equation for v(f).
The constants a and b are then chosen so that F(z, v, ) vanishes when
t = a and t = b, so that eq. (26) is satisfied. Once @, b and »(f) have been
determined in this way, eq. (24) then yields y(x).

For further details see Ref. 2, Sect. 174.
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1. BASIC CONCEPTS
An ordinary differential equation is an equation of form
(1 \1/(:12, Y, yI; Tty y(n)) =0,
expressing a relationship between an unspecified function y of z and its

derivatives ¥’ = dy/dzx, -+ -, y™ = d"y/dxz". An example is the following:
g

’

y —ay =0.

The order of the equation is n, which is the order of the highest derivative
appearing. A solution is a function y of z, ¢ < x < b, which satisfies the
5-01
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equation identically. For many equations one can obtain a function

(2) Yy =f($, €1, "',Cn),

expressing y in terms of z and n independent arbitrary constants ¢, - - -, ¢,
such that, for each choice of the constants, eq. (2) is a solution of eq. (1),
and every solution of eq. (1) is included in eq. (2). When these conditions
are satisfied, eq. (2) is called the general solution of eq. (1). A particular
solution is the general solution with all of the n arbitrary constants given
particular values.

If eq. (1) is an algebraic equation in ™ of degree %, then the differential
eq. (1) is said to have degree k. For example, the equation

®) Yy gt =
has order 3 and degree 2. When the degree is 1, the equation has the form
(4) p@,y, -,y + gl y, -,y TY) =0
or, where p # 0, the equivalent form
(5) y® = Fz,y, -, y" ), F = —q/p.

The ExisTeENcE THEOREM asserts that, if in eq. (5) F is continuous in an
open region R of the space of the variables x, y, - -+, y™ 1, and (xo, yo, * * -,

Yo ™™V 4s a point of R, then there exists a solution y(x) of eq. (5), |z — 20| < h,
such that

(6) Y = Yo, y’ = y’o, s y(”_l) = yo(n—l) for x = Zo.

Thus there exists a solution satisfying ¢nitzal conditions (6). If F has con-
tinuous partial derivatives with respect to y, %/, - -+, y™™" in R, then the
solution is unique.

2. EQUATIONS OF FIRST ORDER AND FIRST DEGREE

" An equation of first order and first degree can be written in either of the
equivalent forms

Q) y = F(z, y),
®) M(z, y) dz + N(z, y) dy = 0.

For equations of special form, explicit rules can be given for finding the
general solution. Some of the most important types are listed here.

Equations with Variables Separable. If in eq. (8) M depends only
on x, N only on y, then eq. (8) is said to have the variables separable. The
equation may then be written with the z’s separated from the 3’s, and the
general solution may be obtained by integration.
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ExampLe. 3’ = 32”y. An equivalent separated form is 322 dx — 3y~ dy

= 0. Hence
f3a:2dx —fy“ldy = c.

Integrating and solving for % one finds y = ¢;¢* as the general solution,
where ¢; = ¢™°.

Homogeneous Equations. A function F(z, y) is said to be homogene-
ous of degree n if F(Ax, Ay) = N'F'(z, y). The differential eq. (7) is said
to be homogeneous if F(z, y) is homogencous of degree 0. To solve such
a differential equation write y = vz and express the differential equation in
terms of v and z. The resulting differential equation has variables separable

and can be solved as above. In general, y' = F(z, ) becomes
' + v = F(z,vx) = 2°F(, v) = G),
dz dv
T i T ewm
Exact Equations. The differential eq. ‘(8) is exact if for some function
u(z, ) ‘

0.

ou ou
(9) = M(.’L‘, Z/), = N(xy Z/),

ox ay
so that du = M dx + N dy. The equation is exact if and only if dM /9y =
dN/ox. The general solution is given (implicitly) by u(z, y) = c.

Exampre. (32?2 — 2zy) dx + (2y — 2®) dy = 0. Here aM /oy = —2&
= dN/dz, so that the equation is exact. Then
%=3x2—2xy, —u=2y—a;2.

oz dy
From the first equation, y = 2* — 2% + g(y), where g(y) is an arbitrary
function of y. Substitution in the second equation yields the relation
—a2 + ¢'(y) = 2y — 2%, so that g(y) = ¥°> + c. Hence the general solu-
tionis2® — 2%y +¢y? =c.

Integrating Factors. If the eq. (8) is not exact, it may be possible to
make it exact by multiplying by a function ¢(z, y), called an integrating
factor.

ExampiLE. The equation (3zy + 242) dx + (2® 4+ 2zy) dy = 0 is not
exact, but after multiplication by = becomes the exact equation

(32%y + 2xy%) dx + (2® + 22%y) dy = 0.
The general solution is 2%y + 2%y? = ¢. The integrating factor is .
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Linear Equations. A differential equation is linear if it is of the first
degree in the dependent variable and its derivatives. If such an equation
is also of the first order, it may be written in the form

(10) ¥ + p@)y = q(@).
Here u = ef 7% is an integrating factor and the general solution is
(11) y=u"! <fQ(a;)u dr + c), L

ExampLe. y' + 27y = 422, Here u = x and eq. (11) gives
y = a1 <f4x3dx+ c) = 2% + cz7L.

3. LINEAR DIFFERENTIAL EQUATIONS

The linear differential eqﬁation of order n can be written in the form
(12) aD"y 4+ D"y +- -+ 1Dy + any = Q(2),

where the coefficients ag, -+, a, may depend on x, and D*y = d*y/dz".
When the a; are constant, eq. (12) is said to have constant coefficients.
When Q(z) = 0, the equation is said to be homogeneous. The homogeneous
equation obtained from eq. (12) by replacing @(z) by 0 is called the related
homogeneous equation. It will generally be assumed that ay # 0 throughout
the interval of x considered.

The general solution of eq. (12) is given by

(13) y = cy1(@) 4+ -+ caynlx) + (@),

where y*(z) is one particular solution and y;(x), - - -, y»(x) are particular
solutions of the related homogeneous equation which are lLinearly inde-
pendent; that is, a relation

biy1 (@) + baye(@) -+ - -+ baya(x) =0,

with constant by, ---, b, can hold only if b, =0, ---, b, = 0. When
Q(z) = 0, one can choose y*(z) to be 0.

Homogeneous Linear Equations with Constant Coefficients. The
equation has the form

(14) aoD"Z/ 4+ an—lDy + any = 0’ ap #0,

where aq, - - -, a, are constants. Particular solutions are obtained by set-
ting ¥ = ¢™. Substitution in eq. (14) leads to the equation for r:

(15) agr® 4+ -+ ap—1r + a, = 0.
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This is called the auxiliary equation or characteristic equation. In general
it has n roots, real or complex, some of which may be coincident (Chap. 2).
From these roots one obtains n linearly independent solutions of the dif-
ferential eq. (14) by the following rules:

I. To each real root r of multiplicity % one assigns the functions ¢*?,
xekx’ cee, xk—-lekx.

II. To each pair of conjugate complex roots a =+ (7 of multiplicity % one
assigns the 2k functions

e*® cos Bz, €% sin fBr, xe** cos P, xe** sin Pz,

k—1

o oo, 2%71e%% cos B, 2 le®

sin Bax.
The n function y,(x), - - -, y.(x) thus obtained are linearly independent and
y = leljl(x) +--+ cnyn(x)

is the general solution of eq. (14).

ExampLE 1. D% — 3Dy + 2y = 0. The auxiliary equation is r2 — 3r
+ 2 = 0, the roots are 1, 2; the general solution is ¥ = ¢;e® + coe**.

ExampLe 2. D% — 9D*y + 24D% — 16y = 0. The auxiliary equa-
tion is ¥ — 9r* 4 2472 — 16 = 0, the roots are =1, 42, +2; the general
solution is y = ¢16® + coe™ - €2%(cg + ca2) + e (c5 + co2).

ExampLe 3. D*y + 4D% + 12D% + 16Dy + 16 = 0. The auxiliary
equation is r* 4+ 4° ++ 12r2 + 16r 4 16 = 0, the roots are —1 = 74/3,
—1 £ i4/3. The general solution is y = e~*[(¢; + cox) cos /3 +
(c5 + c4x) sin /3 z].

Nonhomogeneous Linear Equations with Constant Coefficients.
The equation considered is

(16) aoD™ +- -+ ap_ 1Dy + any = Qx), ap #0,

where ag, -:-, a, are constants and Q(x) is, for example, continuous for
a < x <b. The general solution of the related homogeneous equation is
found as in the preceding paragraphs; it is called the complementary func-
tion. Here are presented methods for finding a particular solution y*(x)
of eq. (16). As indicated in eq. (13), addition of the complementary func-
tion and y*(x) gives the required general solution of eq. (16).

Method of Undetermined Coefficients. If Q(z) is of form

an e**[p(x) cos Bz + q(x) sin Bz],

where p(z) and ¢(x) are polynomials of degree at most h, then there is a
particular solution

(18) y* = x*e**[¢(x) cos Bx + Y(x) sin Bz],
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where ¢(x) and ¥(x) are polynomials of degree at most » and « = 8¢ is a
root of multiplicity & (possibly 0) of the auxiliary equation. If 8 = 0, Q is
of form e**p(x); also p and ¢ may reduce to constants (h = 0). The coeffi-
cients of the polynomials ¢, ¥ can be considered as undetermined coeffi-
cients; substitution of eq. (18) in eq. (16) leads to relations between these
coefficients from which all can be determined. As an example consider the
equation
(D? 4+ 1)y = 3 cos z.

Here « = 0,8 =1, h = 0. Since ¢ are roots of the auxiliary equation,
k= 1and
y* = 2(A cos ¢ + B sin x).

Substitution in the differential equation leads to the relation
2(—Asinz + Beosz) = 3 cosz.
Hence B = 34, A = 0; y* = 34z sin = and the general solution is
3

y = dxsinz + ¢y cosx + cosinx.

Superposition Principle. If in eq. (16) Q(z) is a linear combination
of functions @;(z), - - -, @x(x) and y1*(x), - - -, yn*(z) are particular solu-
tions of the respective equations obtained by replacing Q(z) by Q;(z), - - -,
Qn~(z), then the corresponding linear combination of y;*(x), - - -, yn™(@)
is a solution of eq. (16); that is, if

Q) = b1Q(x) 4+ - -+ byQn(z),
then
y*@) = by *(@) + -+ -+ dyyn*()

is a particular solution of eq. (16). Tor example, particular solutions of
(D? 4+ 1)y = 3 cos z, (D? + 1)y = 5e**

are found by undetermined coefficients to be 34z sin z, ¢ respectively.
Hence a particular solution of

(D? + 1)y = 12 cos x + 10e**

is given by 6z sin z 4 2¢2.
Variation of Parameters. Let the complementary function be

y = ci(®@) +- - -+ cayn(@).
Then a particular solution is

(19) y* = 1@y () +- - -+ o (@yal),
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where
0@ = [w,0) dz, -+, (@) = [1ne) do
and w;(z), ---, wy(z) are defined by the linear equations
y1@wi(@) + -+ -+ ya(@)wa(@) = 0,
(20) Y1@wi@) +- - -+ ya@wa(x) =0,

n PV @i @) + -+ ¥V @ wa@) = Q()/do.

The determinant of coefficients of eqs. (20) is the Wronskian determinant

y1(x) e Yn(@)
(@1) W= y'1(x) coe (o)
1™ V@ o v (@)

Under the assumptions made, W cannot equal 0 for any « of the interval
considered, so that egs. (20) have a unique solution (Chap. 2). This
method is applicable if aq, -+, a, are functions of x, provided ao(x) = 0.

Operational Methods. The operational methods based on the Heavi-
side calculus provide another powerful tool for obtaining solutions of non-
homogeneous linear equations with constant coefficients (see Chap. 8).
Closely related are the methods based on the Laplace transform (Chap. 9).

4. EQUATIONS OF FIRST ORDER BUT NOT OF FIRST DEGREE
The equations considered have form
(22) Y, y,p) =0,
where p = dy/dz. Equation (22) can be solved for p, except where ¢, = 0.
The locus defined by the two equations

(23) v(z, y, p) = 0, Yoz, y,p) =0

is called the singular locus. It may contain curves y = f(z) which are
solutions of eq. (22); such solutions are called singular solutions. The solu-
tions of eq. (22) (with the possible exception of the singular solutions) can
often be obtained by one of the following special methods.
Factorization. If eq. (22) can be factored in the form

(24) [p — F1(@, pllp — Fale, )] -+ [p — Fi(z, »)] = 0,
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then its solutions are obtained by combining all solutions of the first degree
equations

(25) p=F@y), -, p="Fy (p=dy/dn).
For example, the equation
P’ — 2z + y)p + 20y = 0
can be factored into the equations
p = 2, P =Y

the solutions are y = 22 4 ¢, ¥y = c2¢®. If Y(x, y, p) is of second degree in
p, the expressions for p and the equivalent factorization (24) can be ob-
tained by the quadratic formula.

Solving for y or xz. If eq. (22) is of first degree in y, one can solve for y
to obtain an equation ‘

(26) y = F(z, p).

Differentiation of this equation with respect to x yields a relation of form

.

\dp
T

that is, a first order equation relating p and z. If the general solution of
eq. (27) is given by

(28) d’(x’ p) = ¢,
then the equations
(29) Yy = F(CE, p)) ¢(x) p)=c¢

together define solutions of eq. 22; p may be eliminated between the equa-
tions or treated as a parameter. As an erample, consider the Clairaut
equation:

(30) y = xp + F(p).

The method described leads to the “general solution”

‘(31) y = cx + F(c).

There is, in general, a singular solution defined by the equations
(32) s+ Fp) =0,  y=ap+ ).

If the eq. (22) is solvable for x, one can differentiate with respect to y, re-
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placing dx/dy by 1/p; one obtains the solutions in the form

(33) oy, p) = ¢, y = Iz, p).
5. SPECIAL METHODS FOR EQUATIONS OF HIGHER THAN FIRST ORDER

Equations with Dependent Variable Missing. Let the given equa-
tion be

(34) F(xr yly y”) Y y(n)) =0,

so that y does not appear. Set p = dy/dx. Then

2
y// — @’ y/// — El_p,
dx da? ’
and so eq. (34) becomes
dp dn—lp
34/ F(:v ,—v---,———>=0,
B4 ' P e dz™ !

an equation of order n — 1 for p in terms of x. If its solutions are known,
then the solutions of eq. (34) are obtained from the relation y = f pdx.
ExampLE. Consider the equation

$3y” _ x2y’ — 3 + CL‘2.
The substitution p = ¥’ leads to the first order linear equation

L d
a:"—zz—xzfp=3+x2.
dx

Its general solution is found (Sect. 2) to be
1 .
p=——+1+cam
x
Hence integration yields y:
1 L1,
y=—-+z+_-cz + .
z 2

Equations with Independent Variable Missing. Let the given
equation be the nth order equation

(35) | Fly, v,y - y™) =0,
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so that  does not appear. Set p = y’. Then

Thus eq. (35) becomes an equation of order n — 1. If its solutions are
known, in the form
p= ¢(y: €1, ", cn—-l):

then

d, d

W_ W,

dz '¢(yy €1y ** )
Thus integration yields an implicit form of the solutions of the given equa-
tion.

Linear Equations with One Known Solution. Let a linear equation

be given:

(36) ao(@)y™ @) 4 -+ @)y = Q(2).

Let y1(x) be a solution of the related homogeneous equation. Then the
substitutions _

(37) y=n@&y,  w=0

leads to an equation of order n — 1 for w. If w has been found, integration
and multiplication by ¥, () yields y.

6. SOLUTIONS IN FORM OF POWER SERIES

Formation of Taylor Series. Let an equation of order n be given:
(38) y(n) = F(x; Y, yl; ) y(n—l))

and let F be expressible in an absolutely convergent power series in powers
of z, y, ¥/, +-- for |z| < a, |y|<by, ---, |y V| < by, so that I is an
analytic function of the n 4+ 1 variables. Then the solution f(z) of eq. (38)
with initial conditions: y = 0, -+, y™™P = 0 at 2 = 0 is expressible as a
power series in z for |z| < p, provided p is sufficiently small. The series
is the Taylor series of f(x): ‘

f(k) (0)
k!
The values of f(0), - -, f™~(0) are given to be 0. The values of 1™ (0),

(39) f@) = f0) + &"(0) +- - -+ 2* Ao,



DIFFERENTIAL EQUATIONS 5-11
S&t(0), - - - are obtained from the differential equation:
™) = 1,0, ---,0),
JOH (@) = Fo+ Fyy' + - Fyomny™, -,
Jet©) = Fi(0, -+, 0) + Fyo-nF(Q, -+, 0), -

If the initial value x4 of x is not 0, one can introduce a new independent
variable x; = x — xo. If the initial values yo, < -+, of y, -+, ¥~V are
not 0, one can introduce a new dependent variable

.’13”_1
=y - (yo + yor + -4y ———) ;
(n — 1)!
then the initial values of u, @/, - -+, u™™ are 0.
Special Methods for Linear Equations. For simplicity attention
will be restricted to the second order equation

(40) y" + p)y + ql@)y = 0.

If p(x) and ¢(x) are analytic at x = 0, then x = 0 is called an ordinary
point of eq. (40). The Taylor series solution eq. (39) can then be obtained
as above. One can also substitute a series

o]
(41) Y= 2 cpa"
=0

in eq. (40) and obtain conditions on the coefficient ¢,. In general ¢, ¢;
turn out to be arbitrary constants and the other coefficients are expressible
in terms of these two with the aid of a recursion formula. The series eq.
(41) converges and represents a solution of eq. (40) for |z| < a, provided
p(x) and ¢(x) are analytic functions of the complex variable  for |z| < a;
see Chap. 7.

If p(x) and g(x) are not both analytic at x = 0, but xp(z) and 22¢(z) are
analytic at z = 0, then 2 = 0 is called a regular singular point of Eq. (40).
In this case a solution is sought in the form

]
(42) y= Z cnxn+k,
: n=0
where the ¢’s and k are constants. If one substitutes in eq. (40) and equates
to .zero the coefficients of the various powers of x, one obtains a set of
equations relating the ¢’s and k. The coefficient of the lowest power of
gives rise to a quadratic equation in %, called the indicial equation. Four
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cases arise, depending on whether the two roots of this equation do not
differ by an integer, are equal, or differ by an integer. In two of these
cases, the solution consists partly of power series multiplied by log z.
For further details and examples of the important applications, one is re-
ferred to Chap. 7, Sect. 9. (See also Refs. 3, 9, 11.)

7. SIMULTANEOUS LINEAR DIFFERENTIAL EQUATIONS
Attention will be restricted to systems of first order equations:
dy,

(43) E az;(x)y] + Q (x)y 1= 1) te N
dx j=1

A variety of other systems can be reduced to this form by appropriate sub-
stitutions. It will be assumed that the a;(x) and @ (z), ---, Q.(x) are
continuous for a < z < b.

By a solution of eqs. (43) is meant an n-tuple of functions

(44) ‘ y1=fl(x); Y yn=fn(x>7 a<z<b

which together satisfy eqs. (43) identically. The general solution of egs.
(43) can be shown to have form

(45) yi = cifri@) + cofoi(@) +- - -+ cafai(®) + g:(x);
herez = 1, - - -, n, the ¢’s are arbitrary constants; y; = gi(x) (t=1,---,n)

defines one solution of egs. (53); for each j the functions f;;(x) (¢
define a solution of the related homogeneous system

[
—
g
-
3
Nt

y n
(46) - = Z i35y 1= 1, e, N,
dr ;3
and these solutions of eqs. (46) are linearly independent; that is,
bif1i(®) + bafoi(®) + - - -+ bufai(x) = 0, t=1---,m
implies b; = 0, +-+, b, = 0.
Homogeneous Systems with Constant Coeflicients. Consider the

homogeneous system eq. (46) in which the a;; are constants. Particular
solutions are obtained by setting

(47) Y = ale)\x; tty Yn = QR
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Equations (47) define a solution provided X satisfies the characteristic equa-
tion

a;; — N Q2 SR 3P
ao1 Gop — N c++ Qgy

(48) = 0.
An1 An2 Onn — A

If \ satisfies eq. (48), then values of a4, - - -, a, not all 0 can be found such
that

n

(49) Z (a;; — Noi)aj =0 @E=1,---,n),

j=1

where 8;; = 0if ¢ % j, = 1if 7 = j. With these values of the «;, eq. (47)
defines a solution of the system (46). If the characteristic equation has
distinct real roots Ay, - - -, A,, then one obtains # linearly independent solu-
tions in this manner, so that the general solution is obtained in form (45),
with the g;(z) replaced by 0. If X is a repeated root of multiplicity %, one
replaces eq. (47) by

(50) y1 = p1@)e, <+, yn = pa(x)e,

where p;(z), -+, p.(x) are polynomials of degree at most & — 1; one can
obtain k linearly independent solutions in this form, which can be used to
build the general solution. The procedure is easily modified to take care
of complex roots (Refs. 1, 3).

The methods described are more easily formulated in terms of matrices
(Chap. 3, and Ref. 3). -

Nonhomogeneous Systems. If the general solution of the related
homogeneous system is known:

(51) Y = leli(x) ++ Cnfni(x) (z = 1; Tty n);
then one can obtain a particular solution by the method of variation of

parameters. One replaces ¢;, *-+, ¢, in eq. (61) by unknown functions
v1(x), -+, va(x). Substitution in eqgs. (43) leads to the equations

i dv;
(52) i =Qir), di=1,-n,
j=1 dx

which can be solved for the functions dv;/dx; integration then yields v, (z),
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-« +, v,(x) and the solution
(83) ¥ = 0(@f1i(@) +- -4 vn@fuilz), =1, n.

For systems with constant coefficients one can also employ operational
methods (Chaps. 8, 9).

8. NUMERICAL METHODS
Method of Picard. Let a system

L dy; )
(54) ——=Fi(x7y1a "':yn): 7’=1""yn:
dx
be given and let a solution
(55) 21 =f1(x)y cty Yn =fn(x)’ anS b)
be sought with initial values
(56) Jit@e) = ky, o+, falwo) = kn, a <o <D

One forms successive approximations to the desired solution by the for-
mulas:

F12@) = ke, -, ful (@) = Fn,
fzz(x) =f Fi(t,kl,---,kn)dt"‘ki, ’L=1’ cee,m,
)

and in general

179@) = [ R S0, - £0) de+ T

foriz = 1, ---, n. Under appropriate hypotheses (see Ref. 3) the sequences

fi™x) (Z =1, ---, n) converge to the desired solution (55) as m — .
An equation of order n

(57) y™ = Fl,y, -,y

can be replaced by the system
. dy dyz dYn_1 Ayn

(58) - = Ya, —— = Y3 = Yn,y ';i—:;:F(x; Y1y * -, yn)

dx dx

and then treated in the same way.

Step-by-Step Integration. An approximation to the solution (55)
can be obtained by replacing (54) by the corresponding incremental equa-
tions '

(59) : Ay; = Fy(x, y1, -+ -, yn) A2,

dx
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The values of ¥y, -+, y» at * = o are the given constants kq, « - -, k.
The values at o + Ax are k; 4 Ay, -+ -, k, + Ayn, where the Ay; are
computed from eq. (69) with F'; evaluated at g, &y, - - -, kn. Proceeding
in this manner, step by step, one obtains values of ¥y, -+, y, at discrete
values xo, o + Az, ---. The increments Az can be varied or kept con-
stant. Under appropriate hypotheses, the “solution’”” thus computed con-
verges to the desired solution as the increments Az approach 0. (See
Ref. 3.) '

Other Methods. A variety of more refined numerical methods have
been developed, in many cases well suited to analysis on digital computers.
For details see Chap. 14.

9. GRAPHICAL METHODS—PHASE' PLANE ANALYSIS

The discussion will be limited to the first order equation

(60) Y = f(z,y)

and to the system

x dy
= F(x: y); - = G(x; y)'

61 —
(1) dt dt

Elimination of ¢ between the two eqgs. (61) leads to an equation of form
(60) and, indeed, eqgs. (61) should be thought of as a parametric form of
eq. (60); ¢ can be interpreted as.tfme. It should be remarked that certain
second order equations can be reduced to these forms. For example an
equation

- ‘ & f( dx)
“ e, —
da? dt

is equivalent to the pair

(63) i Yt w)
- =Y - = y Yo
a Y a Y

Method of Isoclines. For the eq. (60) the isoclines are the loci of
constant slope; that is, the loci

(64) J,y) = m.

In general, eq. (64) defines a family of curves in the xy-plane. If one
draws a series of short line segments, all with slope m, and each with its
center on the curve, then one has obtained a series of tangent lines to the
unknown solutions. If the process is repeated for many different values of
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m, one obtains a dense set of such tangent lines. From these tangent lines,
the solutions are usually readily sketched. An example is suggested in Fig.
1.

/|

F1c. 1. Solution of ¥’ = x — y by isoclines.

Singular Points. The form (60) has certain disadvantages which can
be avoided by using an appropriate equivalent form (61). In particular,
f(z, y) may have discontinuities, while the equivalent form (61) need have
none. For example, the equation y’ = (x> — y?)/ay can be replaced by
dx d
= d—gt/=x2—y2;

the new system has no discontinuities. Eqilations (65) can be thought of
as defining a vector field in the xy-plane. Instead of drawing tangent lines
as above, one can draw many vectors at scattered points in the zy-plane.
These suggest the solution curves in the same way as do the tangent lines.

The vector field fails to define a direction only where both dz/dt and
-dy/dt are 0. TFor eqs. (65) this holds only at the origin. For the general

system (61) this holds where both equations

(66) - Fy) =0, Gx,y) =0
are satisfied. The solutions of eqgs. (66) are called singular points.

A graphical analysis near the singular points is generally difficult to com-
plete with the aid of isoclines alone. It is possible to obtain a qualitative

(65)
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picture of the solutions near the singular point by expanding F (z, y), G(z, )
in power series and neglecting all but the linear terms. If the singular

Y

(A

>

Fre. 2. Solution near focus type singular point.

%

x

N

point is at (0, 0), one thus replaces eqs. (61) by the approximating linear
system

(67) d +b @y +b
— = s — = q Y.
Y 1 1Y dl 2% 2l

The éppearance of the solutions of eqs. (61) near the singular point in
typical cases is suggested in Figs. 2, 3, 4, 5. The arrows on the curves indi-

)
N

Fi1c. 8. Solution near saddle-point type singular point.

N/
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cate the direction of increasing time . The four cases illustrated correspond
to four cases for the roots of the characteristic equation

a; — A bl

[45)] b2 — A B

In Fig. 2 the roots are —a =+ Bz, with « > 0, 8 > 0; in Fig. 3 the roots
are Ay, Ag with A; < 0 < Ag; in Fig. 4 the roots are 4=8¢, 8 > 0; in Fig. 5

(68) 0.

y

F1c. 4. Solution near center type singular point.

the roots are A\;, A2 with A; < As < 0. The solutions of the system (61)
will have the same appearance near (0, 0) as the solution of eqs. (67),
except in borderline cases; of the four cases illustrated, only that of Fig. 4
is of borderline type. For a full discussion, see Ref. 2.

y

F1c. 5. Solution near node type singular point.
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Limit Cyeles. Of much importance for applications are the solutions
represented by closed curves in the zy-plane. These are termed limit cycles.
For the parametric eqs. (61) such a solution is represented by equations
x = p(t), y = q(t), where p and ¢ have a common period 7. A typical
solution family containing a limit cycle C is illustrated in Fig. 6. The

(n Y

Frg. 6. Limit cycle.

cycle C is stable in this case; that is, all solutions starting near C approach
C as time ¢ increases. In many cases simple properties of the isoclines allow
one to conclude existence of limit cycles in particular regions. A theorem
of Bendixson states that a region in which F, 4+ G, > 0 can contain no
limit cycle of egs. (61) (Refs. 2, 3).

Phase Plane. TFor the motion of a particle of mass m on a line, classical
mechanics gives an equation of the form

(69 T _ p <t dx)
m— = , T, — ).
) de? dt

When F is independent of ¢, the substitution » = dz/dt leads to an equation
dv
(70) my — = F(x, v)
Cdx

which can be analyzed as above. The pair (z, v) represents a phase of the
mechanical system and the zv-plane is termed the phase plane. Second
order equations arising in other contexts can be treated similarly and the
term phase is used for the pair (z, v) or (x, y) regardless of the physical
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significance of the variables. An especially simple graphical discussion can
be given for the conservative case of eq. (69):

d2

G m—s

See Ref. 2.

= F(z).

10. PARTIAL DIFFERENTIAL EQUATIONS

This section presents a brief discussion of partial differential equations
of second order. Some further information is given in Chap. 6. (See
Refs. 4, 10.)

Classification. Consider an equation

o%u o%u o%u
(72) A —I—2B———+C +D +E —]—Fu—l—G—O
0xdy
where u is an unknown function of x and y and the coeﬂicients 4, -, @

are given functions of x and y (perhaps constants). The eq. (72) is termed
elliptic if B2 — AC <0,
parabolic if B2 — AC = 0,
hyperbolic if B2 — AC > 0.

The three types are illustrated by the

Lav] t" %u N %u 0
aplace equalion: — + — =
D q 63;2 ayg )

‘Bu LR

heat equation: — — k? — = 0,
at dx?

y %u 2 u 0
wave equation: Py Py .
Attention will be restricted to the three special types.

Dirichlet Problem. One seeks a solution u(z, y) of the Laplace equa-
tion in an open region D, with given boundary values on the boundary of
D. This problem can be treated by conformal mapping (Chap. 10, Sect. 5).

Heat Equation. A typical problem is the following. One seeks a solu-
tion u(x, £) of the heat equation u, — k*u,, = Ofort > 0,0 < z < 1, with
given initial values ¢(x) = u(x, 0) and boundary values (0, ) = 0,
u(1, ) = 0. To obtain a solution one can employ the method of separa-
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tion of variables. One seeks solutions of the differential equation and
boundary conditions of form

(73) u = f(x)g().

From the differential equation one finds that one must have

7O _ 0@

o0 @
Hence ¢'/g must be a constant A, and f”’/f must equal \/k?:
(74) g'(t) —M() =0, Kf"(@) — M) = 0.
TFrom the boundary conditions at + = 0 and x = 1 one finds that
(75) J0) =jQ1) =0.

From eqgs. (74) and (75) one concludes that f(x) and A must have the form

76 x) = bsin nwx N = —k*n2g? n=12 ...,
( ) f() b b ) b

From egs. (74) g(t) has form const.-e. Hence particular solutions of form

(73) have been found:
7 w=e ¥ tginnmr, =12 ---

Each linear combination of the functions (77) is also a solution of both the
heat equation and the boundary conditions at x = 0 and x = 1. Accord-
ingly, each convergent series

el
(78) u =Y be " sin
n=1
also represents a solution. By proper choice of the constants b, the initial
values can be satisfied. One requires that ‘

(79) #(x) = Y b, sin nxz.

na=1
Thus the b, are determined from the expansion of ¢(x) in its Fourier sine
series (Chap. 8, Sect. 8). With the b, so chosen, eq. (78) represents the
desired solution of the given problem.

Wave Equation. One seeks a solution wu(z, {) of the wave equation
Wy — KUz = 0 for 0 < < m, ¢ > 0 with given initial values u(z, 0) =
¢(x) and initial velocities u,(x, 0) = ¢¥(x) and given boundary values
u(0, t) = u(m, t) = 0. This is the problem of the vibrating siring. The
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method of separation of variables can be used as above and one obtains
the solution in the form of a series

(80) u =Y _sin nxla, sin knt + B, cos knt],
n=1

where a, and 3, are determined from the expansions:

®© [«]
(81) () = D Bosinnz, - Y@&) = 2 nka, sin nz.
n=1 n=1
Relaxation Methods. One can obtain an approximation to the solu-
tion of a partial differential equation by replacing it by a corresponding
difference equation. The method has been especially successful for the
Dirichlet problem, which is discussed here. The differential equation
Uzz + uyy = 0 is replaced by the equation

(82) wu(@+h,y) + ulx,y + k) +ul@ — b, y)

If the given region is the square 0 <2 = 1,0 < y < 1, one chooses h =
1/n for some positive integer n and requires eq. (82) to hold at the lattice
points (kih, kah), 0 < ky < n,0 < ks < n. The values of u on the bound-
ary (x =0or 1, y = 0 or 1) are given, and eq. (82) becomes a system of
simultaneous linear equations for the unknowns w(kqh, koh). These can be
solved by the relaxation method. One chooses an initial set of values for
the unknowns, then obtains a next approximation by replacing u(z, y) by

®3)  Hu@+hy) tu@,y+h) +u — by +uE,y — b

at each lattice point. Repetition of the process generates a sequence
un(z, y) which can be shown to converge to the solution of eq. (82). As
‘h — 0, the solution of eq. (82) can be shown to converge to the desired
solution of the Dirichlet problem (Ref. 10).

REFERENCES

1. R. P. Agnew, Differential Equations. McGraw-Hill, New York, 1942.

2. A. Andronow and C. E. Chaikin, Theory of Oscillations, Princeton University Press,
Princeton, N. J., 1949.

3. B. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations,
MeGraw-Hill, New York, 1955. ’

4. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol I, Interscience,
New York, 1953.



DIFFERENTIAL EQUATIONS 5.23

5. I&. L. Ince, Ordinary Differential Equations, Longmans, Green, London, 1927,

6. E. Kamke, Differentialgleichungen, Lisungsmethoden und Lidsungen, Vol.1, 2nd
edition, Akademische Verlagsgesellschaft, Leipzig, 1943,

7. BE. Kamke, Differentialgleichungen reeller Funktionen, Akademische Verlagsge-
sellschaft, Leipzig, 1933.

8. E. D. Rainville, Elementary Differential Equations, Macmillan, New York, 1952.

9. E. D. Rainville, Intermediate Differential Equations, Wiley, New York, 1943.

10. R. V. Southwell, Relazation Methods in Engineering Sciences, Oxford University
Press, Oxford, England, 1946. '

11. E. T. Whittaker and G. M. Watson, A Course of Modern Analysis, 4th edition,
Cambridge University Press, Cambridge, Iingland, 1940.






A GENERAL MATHEMATICS Chapter 6

Integral Equations

E. H. Rothe

1 Definitions and Main Problems 6-01
2. Relation to Boundary Yalue Problems 6-03
3. General Theorems 6-05
4, Theorems on Eigenvalues 6-06
5. The Expansion Theorem and Some of Its Consequences 6-07
6. Variational Interpretation of the Eigenvalue Problem 6-08
7. Approximation Methods 6-10
References 6-17

1. DEFINITIONS AND MAIN PROBLEMS

A linear integral equation of first kind is an equation of form
b
O | G, 0200 de = 565

f(s) and K(s, t) are considered to be given, and a function z(f) satisfying
eq. (1) is called a solution of the integral equation.

Fredholm Integral Equation. This is the linear iniegral equation of
second kind and has the form

b
2) x(s) — )\f K(s, yz(t) dt = f(s).

6-01



6-02 GENERAL MATHEMATICS

Here K(s, t) and f(s) are given real functions, and A is a given real con-
stant; a solution of the integral equation is a funection z(s) satisfying eq.
(2) fora = s =< b.

Volterra Integral Equation. If in eq. (2) the upper limit b is replaced
by the variable s, the resulting equation

3) x(s) — )\sz(s, Hx(t) dt = f(s)

is called a Volterra integral equation. Equation (3) can be considered as a
special case of eq. (2); namely, the case for which K(s, t) = 0fort¢ = s.

The preceding definitions relate to integral equations for functions of
one real variable. There are analogous definitions for functions of two or
more real variables. It is also of importance to allow z, K, f to take on
complex values and to allow A to be complex. For simplicity the results
will be formulated for functions of one variable; essentially no change is
required to extend the results to functions of several variables. Only func-
tions with real values will be considered here. The discussion will further-
more be restricted to the integral equation of second kind; for the equation
of first kind, see Ref. 10, Chap. 2.

Remark. The equations defining Laplace and Fourier transforms can
be regarded as integral equations of first kind. Solving the equations is
equivalent to finding the inverse transforms. See Chaps. 8, 9.

The function K(s, t) in eq. (2) is called the kernel of the integral equation.
The eq. (2) is said to be homogeneous if f(s) = 0; otherwise it is nonhomo-
geneous. The homogeneous equation

b
(4) () — A f K(s, Oz(t) = 0

obtained from eq. (2) by replacing f(s) by 0 is called the homogeneous equa-
tion associated with eq. (2).

A number A such that eq. (4) has a solution = ¢(s) not identically 0 is
called a characteristic value or etgenvalue of eq. (4) or of the kernel K(s, t);
the solution ¢(s) is called ‘an eigenfunciion associated with A. For each
eigenvalue A there may be several associated eigenfunctions. From the
definition it follows that O cannot be an eigenvalue.

The eigenvalue problem associated with eq. (4) is the determination of
whether, for a given kernel, eigenvalues exist, what they are, and what
the corresponding eigenfunctions are. :

The expansion problem associated with eq. (3) is the determination of
the possibility of expanding every function g(s) of a given class in an in-
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finite series:

g(s) = and’a(s);
a=1

where the ¢,(s) are eigenfunctions.

The solvability problem associated with eq. (2) is the determination of
whether eq. (2) has a solution z(s) and whether the solution is unique.
2. RELATION TO BOUNDARY VALUE PROBLEMS

The problems described in Sect. 1 arise naturally in the analysis of bound-
ary value problems associated with partial differential equations.

A TypicaL ExaMmpLE is presented. The equation is the wave equation
(5) wy — V=0, u=u(,uy,z1t),
where VZ is the Laplacian operator:

6 o2 ®u *u
. u = — _— —_—

( dx* N> 822

A finite domain D, with smooth boundary B, is given in z, y, 2z space; a
function g(z, y, 2) is given in D. One seeks a function « satisfying eq. (5)
for t = 0 and for (z, ¥, 2) in D and satisfying the boundary conditions

Q) u(@,y,21) =0 (z,y,2) on B, ¢ =0;
(8) u(m, Y, % 0) = g(x7 Y, Z), (xy Y, Z) in D;
9) "z, y, 2, 0) =0, (z, ¥, 2) in D.

The classical attack on this problem is to “separate’” the time and space
variables; that is, to set

10) u(@; 9, 2, 1) = S, y, 2T0).

Then one is led to the boundary value problems:

(11) VES + AS =0, S = 0 for (z, y, z)-on B.
(12) T"(t) + AT = 0, T7'(0) = 0.

If S and T satisfy eqs. (11), (12) for some constant X\, then « = ST satis-
fies egs. (5) and both (7) and (9), but not necessarily eq. (8).

Integral Equation. The problem (11) can be replaced by an integral
equation by the following reasoning. It is shown in the theory of partial
differential equations (Ref. 5) that there exists a uniquely determined func-
tion K(s, o) of the two points

S: (.’L', Y, Z)} g (S’ m g.)
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in D, the so-called Green’s function, with the following properties: K has
continuous second partial derivatives as long as s 5 ¢; K(s, ¢) = 0 for s
on B, o in D; if ¢(s) has continuous first partial derivatives in D and D, is
an arbitrary subdomain of D (with smooth boundary), then

(13) szffK(x’ yywzy & g-)(ﬁ(gx 7, _{') dé¢dndi = _d)(x; Y, Z)

Dy

for (z, y, 2) in Dy. Identifying ¢ with —AS and D; with D, one sees that
the boundary value problem (11) is equivalent to the homogeneous inte-
gral equation in these variables:

14) 8@, v, 2)—\ f f Kz, v, 2, & n, OSE n, §) dE dn d = 0,
D

Solution. Let eq. (14) have a sequence of eigenfunctions S,(z, y, 2)
associated with the positive eigenvalues N\, (@ =1, 2, --.). Then S,
satisfies eq. (11) with A = A,; for A = A, eq. (12) has the solution 7, =
"cos \/Z, t, so that v = S,T, satisfies egs. (5), (7), (9). To satisfy eq. (8),
one notes that each series

(15) u =3 caSa(®@, ¥, 2)Talt) = ZcaSacos Vgt

a=1

also satisfies egs. (5), (7), (9), if the ¢’s are constants and the series satisfies
appropriate convergence conditions. The condition (8) now becomes

(16) 9(x, v, 2) = 2 caSal®, ¥, 2);
=1 _

thus one is led to the expansion problem. If g can be expanded as in eq.
(8), then (15) defines a solution of the given problem.

Suppose that the 0 on the right-hand side of eq. (5) is replaced by
Folz, y, z, t); this corresponds to an external force. If Fo(z, v, 2, t) =
F(x, y, 2)T(t), where T'(t) satisfies eq. (12) for some A = X\q, then the sub-
stitution of eq. (10) leads to the nonhomogeneous integral equation

(A7) S, 9, 2) — N f f Kz, y, 2 & n, 9SG 1, §) dedn ds = f(z, 9, 2),

D
where

18) S,y 2 = f f Kz, y, 2 & n, OF, n, ©) dt dy ds.
D
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3. GENERAL THEOREMS

In what follows K(s, ¢} will be assumed continuous for a < s £ b,
a £¢=0b. Such a continuity condition is not always satisfied, e.g., for
the Green’s function of Sect. 2. See Ref. 5 (pp. 543 ff.) and Ref. 6 (pp.
355 ff.) for reduction of the discontinuous case to the continuous case.

Definitions. The following definitions relate to functions of ¢ defined
and continuous for ¢ £ ¢ £ b. If x, y are two such functions, their scalar
product is ‘

b

(19) @, 1) = f 2(Oy(0) di.

The norm || || of x = x(t) is defined as (z, z)*!. Functions z;, - - -, x, are
linearly independent if

(20) c11(t) + -+ -+ can(t) =0,

with constant ¢y, ---, ¢,, implies ¢; = 0, - -+, ¢, = 0; if the functions are
not linearly independent, they are termed linearly dependent. An infinite
system of functions

(21) b1y b2, * 0

is called linearly independent if ¢y, ---, ¢ are linearly independent for
every k.

Two functions z, y are said to be orthogonal if (z, y) = 0. The system
(21) is orthogonal if (¢a, ¢s) = 0 for @ # B. A system of orthogonal func-
tions none of which is identically zero is necessarily linearly independent.
The system (21) is called orthonormal if it is orthogonal and normalized,
that is,

| o || = 1 for all c.

If the system (21) is linearly independent, it can be orthogonalized and
normalized; that is, an orthonormal system {¥.} can be found such that,
for every n, ¥, is a linear combination of ¢, -+, ¢, and ¢, is a linear
combination of ¥, - -, ¥». TFor details, see Ref. 4, p. 50.

TuE SCHWARZ INEQUALITY states that for every z, y, | @, )| = [z |- ¥ |,
with equality if and only if x, y are linearly dependent.

THE BesseL INEQUALITY slales thal, if {¢a} s an orthonormal system,
then for every x :

(22) 2 & e P = 2P

a=1
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Now consider three related integral equations:

b

23) o(s) — A f K(s, )6(0) dt = 1(s),
b

(24) 6(s) — A f K(s, 0(t) dt = 0,
b .

(25) ¥(s) — )\f K(t, s)y(t) dt = 0.

Equation (24) is the homogeneous equation related to (23); eq. (25) is
called the adjoint or transposed equation of (24).

TueoreM 1. If \ s an eigenvalue of eq. (24), then \ is an eigenvalue of
eq. (25). There are at most a finite number k of linearly independent eigen-
functions of eq. (24) assoctated with eigenvalue N; this maximal number k s
the same for eq. (25).

The number k is called the multiplicity of the eigenvalue A.

TuEOREM 2. Equation (23) has a solution if and only if f is orthogonal to
all solutions of the adjoint eq. (25). ‘

Conclusions Based on Theorems 1 and 2. Let A not be an eigenvalue
of K(s, t). Then X\ is also not an eigenvalue of K(t, s); that is, ¢ = 0 is the
only solution of eq. (25). Hence (f, ¢) = 0 for all solutions ¥ of eq. (25),
and eq. (23) has a solution for arbitrary f. For each f, the solution is unique;
for the difference ¢ of two solutions is a solution of eq. (24), hence ¢ = 0.

Let \ be an eigenvalue of K(s, t). Then eq. (25) is satisfied for at least
one ¥ not identically zero and eq. {23) s not satisfied for some f, in particular
for f = ¢. (In the problem of Sect. 2 this case arises if the frequency Ag of
the time factor 7' of Fy(z, y, 2, t) is an eigenvalue of the homogeneous eq.
(14); this is the case of resonance.)

One is thus led to the following alternative of Fredholm: either (i) the
nonhomogeneous eq. (23) has a solution for arbitrary f or (ii) the homo-
geneous eq. (24) has at least one (not identically vanishing) solution.
Case (i) can also be characterized by the statement: eq. (23) has at most
one solution for each f; for the uniqueness implies existence of a solution.

4, THEOREMS ON EIGENVALUES

The kernel K(s, t) is said to be symmetric if K(s, t) = K(t, s). This case
occurs in many applications; for example in the problem of Sect. 2.

TaEOREM 3. A symmetric kernel has at least one and at most a countable
nfinity of ergenvalues. Eigenfunctions corresponding to distinct eigenvalues
are orthogonal. The eigenvalues can be numbered to form a sequence {\.}, in
which each eigenvalue is repeated as many times as its multiplicity, and such
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that |\ = |Na| £ - - - ;4f there are infinitely many eigenvalues, then [Ay| —
as a — «. An eigenfunction ¢, can be assigned to each A, in such a fashion
that the sequence {¢q} is orthonormal and every cigenfunction ¢ is a linear
combination of a finite number of the ¢4’s.

The sequence {¢,} is called a full system of cigenfunctions of the kernel.

ReEmark. While restricting K(s, t) to be real, one can consider complex
eigenvalues A and eigenfunctions z(t) = z,(¢) + 4z2(t). Some kernels have
only complex eigenvalues; some kernels have no eigenvalues at all. A sym-
metric kernel has only real eigenvalues.

5. THE EXPANSION THEOREM AND SOME OF ITS CONSEQUENCES

THEOREM 4. Let {¢o} be a full system of eigenfunctions for the symmetric
kernel K(s, t). Then in order that a function g(s) can be expanded in a uni-
Jormly convergent series:

(26) g(S) = E ca¢a(s)7
where ,
(27) | Ca = (g; ¢a):

1t 1s sufficient that g(s) can be written in the form
b
(28) g(s) = f K(s, HG(@) dt,

where G(t) is continuous.

In many applications the form (28) for the function g(s) to be expanded
arises in a natural way. For example, the function (18) is of this form.
~ The coefficients (27) can be written in a different form which is often
useful. From eq. (28) and from the facts that ¢, satisfies eq. (24) with
A = A, and that K is symmetric, one deduces the expression :

_ (G40
Ao

(29) Ca

As a first application of the expansion theorem, let A be a number which
is not an eigenvalue, and seek to expand the solution x = ¢(s) of eq. (23)
in terms of the eigenfunctions. To do this, note that by eq. (23) x — f is
of form (28) with G = Az. By Theorem 4 and eq. (29) one deduces the

expansion

A :
(30) z(s) — f(s) = Z)\— (2, $a)da(s).

a 24

If this relation is multiplied by ¢4(s) and integrated from a to b, one ob-
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tains a linear equation for (z, ¢5). Solving this equation and substituting
the result in eq. (30) gives the desired formula

(31) x®=ﬂ@+x2¥fﬂ

ba(s).

(The series is meaningless if X is one of the A,, unless (f, ¢,) = 0; this is
in agreement with Theorem 2 of Sect. 3.)
A second application concerns the ‘“‘quadratic form”

b oAb
(32) Iz, z} =f f K(s, z(s)x(t) dt ds,

whose importance will become clear in the next section. If one applies the
expansion theorem to the integral of K(s, t)z(f), one obtains the formula:

. kaz
(33) I{:li, .’IJ} = ZT; ka = (.’E, ¢a)-

The transition from eq. (32) to (33) is the analogue of choosing coordinates
which represent a conic section in its “principal axis” form.
6. VARIATIONAL INTERPRETATION OF THE EIGENVALUE PROBLEM
In this section the hypotheses and notations are the same as those of
Sect. 5. It is convenient to denote the positive A,’s by
(34) O0<pr=Ep2=ps=---
and the negative ones by
(35) 0> —m = —ne=—mg=---

There may be no p’s or no n’s; as remarked in Sect. 1, 0 is not an eigen-
value. Equation (33) now becomes

(36) Iz,z} = = - 22,

where k; = (z, ¥;), l; = (z, x;) and ¢; is the eigenfunction associated with
pj, x; the eigenfunction associated with n;. From eq. (36) and Bessel’s
inequality (22) one now concludes:

TrEOREM 5. If there are positive eigenvalues of the symmetric kernel
K(s, t), then

EX;
(37) Iz, 2z} = )
D1
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where py is the smallest positive eigenvalue. The maximum of I{xz, x} for x
within the class of © having norm 1 is attatned when x = ¥ and equals 1/p;.
If there is a positive eigenvalue py,, then the maxzimum of I{x, x} within the
class of x for which

18 attained when x = ¥, and equals 1/p,.

If K(s, t) is replaced by —K(s, {), one obtains a characterization of the
negative eigenvalues and corresponding eigenfunctions.

The characterization of eigenvalues in Theorem 5 is recursive; that is, in

order to characterize p, and ¥, one has to know ¢y, -+, ¥n_;. A direct
characterization is obtainable as follows. Let M {yy, - -+, yo_1} denote the
least upper bound of 7{z, z} among all  such that

(39) (.’L', y]) =0 (]: 1) "')n—l)'

It can be shown that, among all choices of 3 = y1(2), -+, Yn—1 = Yn_1({),
M has its smallest value, namely 1/p,, when y; = ¢4, -+, ¥yn—1 = ¥n_1.

See Ref. 4, p. 132.
Rayleigh-Ritz Quotient. This is the quotient

(40) Q{z} = I{z, z} + f b[ f "Kes, ) 20 dt]2 ds.

Assume that there are at most a finite number of negativeveigenvalues
and assume all the eigenvalues are numbered so that \; S A2 S A3 <+ -,
From eq. (33) one finds

(a1) fes = (e (2)

«@ (24 a (24

From the expansion theorem of Sect. 5, with G(¢) = x(f), one deduces that

(42) f ’ [ j; bK(s, £z (?) dt]2ds = %‘ (’:_:)2

From egs. (40), (41), (42) one thus obtains the inequality
(43) Qfz} = N\

Furthermore one can show that Q{x} takes on its minimum A; when
x = ¢1. Thus the smallest eigenvalue and associated eigenfunction are ob-
taznable by minimizing Q{x}. This is the basis of a very effective computa-
tional procedure.



6-10 GENERAL MATHEMATICS

The quotient @{x} can be written in another way, more familiar in the
theory of differential equations. One sets

b
(44) u(s) = f K(s, () dt,
so that
b b
(45) Q{x) =f u(t)x(t) dt +f u? dt.

The analogous definition, and integration by parts, for the problem of Sect.
2 leads to the expression

[[f @ + w2+ w2y dw ay e
D

(46) Qla} = g

fffu2dxdydz
D

where u is the solution of the problem

47) V2u = —xinD, u=0onB.
7. APPROXIMATION METHODS

The first four methods to be described are devices for replacing the inte-
gral equation by a system of linear algebraic equations.

Approximation of Integrals. Let a subdivision of the interval
a =t = bbe given:

a=t1<t2 <"’<tn<tn+1=b

and let 6§ = max ({31 — t;). Then for continuous A(f), the difference

b n
f Rty dt — 3 h(t) (41 — &)
a Jj=1

can be made as small as desired, in absolute value, by making § sufficiently
small. Hence one can take the sum as approximation to the integral. If
this is done for the Fredholm eq. (2), one obtains the approximating
equation

(48) 2(s) = N 22 K(s, t) (t1 — 1)) = J(9).
j=1
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If one now writes
49)  z(t) = ay, K, )t — ) = aij, f(t:) = b;

for: =1, --+, n, then at s = ¢; eq. (48) becomes

(50) T, — N D ax; = b; =1, --,n).

j=1
This is a system of linear equations for 2y, - -+, x,. A solution can be re-
garded as giving the values of the desired x(s) at ¢, - -, {,; one can inter-

polate linearly between these points to obtain an approximation to z(s).
The first proof by Fredholm of the main theorems of Sect. 3 was based on
eq. (50) and subsequent passage to the limit (n — «, § — 0).

For numerical purposes the procedure may be improved by using better
approximations for the integral such as those given by the trapezoidal rule,
Simpson’s rule or Gauss’s quadrature (Ref. 9, Chap. 7). Each of these
methods replaces the integral by a sum Zh(f;)A; with properly chosen
abscissas {; and “weights” A;. TFor more details and also the question of
convergence, see Ref. 1 (pp. 105 ff.), Ref. 3 (pp. 437 ff.), Ref. 9 (p. 455).

Method of Degenerate Kernels. A kernel A(s, t) is called degenerate
if it can be written as a finite sum of products of a function of s by a func-
tion of ¢; that is, if it is of the form

(51) A(s, ) = i Aj(s)Bj(0).
Jj=1

Every continuous kernel K(s, t) can be approzimated by a continuous degen-
erate kernel A (s, t); that is, for every e > 0 there exists a continuous A (s, t)
such that |K(s,t) — A(s,t)| < efora = s £ b,a £t =< b. One therefore
obtains an approximate solution of eq. (2) by replacing K by A. For the
question of convergence one is referred to Ref. 4 (pp. 118 ff.), Ref. 1
(Abschnitt IV), and Ref. 3 (p. 464).

If K is replaced by 4, the Fredholm eq. (2) is replaced by the equation

o b
(52) 2(s) — N 22 Ai(5) | Bi()z(t) di = f(s),
Jj=1 a
whose solution is found by solving a system of linear equations. To see
this, one multiplies eq. (52) by B;(s) and integrates with respect to s from
a to b. With the notations

b

' b b
f z(0)B;()) di = xj, f A;(O)B() dt = as;, f FOB;(#) dt = fj,

a
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one obtains the system

(53) Xy — A Z a;%; = fs (=1, ---,n).
j=1
It can be verified that if z1, - - -, , is a solution of this linear system, then
(54) z(s) = f(s) + N 20 w45(5)
j=1

is a solution of eq. (52) and, conversely, every solution of eq. (52) is ob-
tained in this way.

The Ritz-Galerkin Method. This is a method for finding approxima-
tions to the eigenvalues and eigenfunctions of the homogeneous eq. (3)
with symmetric kernel. Let {v,} be an orthonormal system. Such a sys-
tem is called complete (in the class of continuous functions on the interval
a £ s £ b) if for every continuous function x(s) the sums

n b
(55) 2 zi(s), T = f z:(D)vs(t) di
7=1 a

converge “in the mean” to x(s); that is, if

b n
lim | [z(s) — D zwi(s)]?ds = O.

n—oxd g i=1
ExampLe. The functions
v = 20, vgpy1 = 7 2COSMS, Vg = w Sisinms, (m=1,2 )

form a complete orthonormal system for - < s £ w; see Chap. 8, Sect.
8.

Now let ¢1(s) be a normalized eigenfunction of eq. (3) corresponding to
the smallest positive eigenvalue A;. (If there are no positive eigenvalues,
one follows a similar procedure starting with the negative eigenvalue of
smallest absolute value.) One now seeks an approximation ¢ to ¢; of form

(56) ¢ = Z c0i(8),

=1

where {v,} is a complete orthonormal system. In order to determine the
¢;, note (Theorem 5, Sect. 6) that 1/\; is the maximum of I{z, x} when
|z ]| = 1, and that this maximum is reached for z = ¢;. Restricting at-
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tention now to functions of form (56), one finds

(57) I{¢, ) = 2° 2 bagtals,
a=1 ﬂ=1
with
b b
(58) bag =f f K(s, tva(s)vg(t) ds dt.
The condition || ¢ || = 1 becomes
(59) e =1.

Maximizing the quadratic form (57) with side condition (59) can be ana-
lyzed by the method of Lagrange multipliers (Ref. 4). One obtains the
equations

(60) Ci_)\zbijcj=0 G=1,---,n)

j=1

which, together with eq. (59), determine the ¢; and A\. In particular, A is
a root of the algebraic equation obtained by setting the determinant of
eq. (60) equal to zero. If \;* is the smallest positive root of this equation,
then A\, * is an approximation to Ny and M * = Ay; for A = A * egs. (59) and
(60) determine ¢y, -- -, ¢, and, by eq. (56), a desired approximation ¢ of
the eigenfunction ¢;.

Method of Enskog. The method will be discussed for the Fredholm
eq. (2) with symmetric kernel, with X not an eigenvalue. (For less restric-
tive assumptions, see Ref. 7, p. 109.) It is based on a complete linearly
independent system vy, vs, - - - with the additional property that the func-
tions

b
(61) Yu(8) = va(s) — A f K(s, Oualt) dt

are orthonormal and complete. Such a system can be constructed as fol-
lows: Let wq, ws, -+ - be a complete linearly independent system (e.g., the
system of sines and cosines given above). One then defines

b
(62) 2,(8) = wy(s) — A f K(s, hw,(t) dt.

It can be proved that the z, are likewise linearly independent and com-
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plete. From the z, one constructs an equivalent orthonormal system
Y1, Y2, - -+ (Sect. 3), so that relations

(63) Yn(s) = Z Crnm?m(8)
m=1

hold, with constant ¢,,,. One now defines:

(64) va(8) = i CrmWy,(8).
m=1

It follows from eq. (62) that eq. (61) holds. Moreover, the system {v,} is
a complete linearly independent system.

Having a system {v,} of the properties indicated, one can find an ap-
proximate solution z(s) of the Fredholm eq. (2) of form

x(s) = § cyi(8), ¢ = (z, ¥a).

Multiply eq. (2) by v:(s) and integrate with respect to s from a to b, to
obtain the relations:

b b b
(f, v;) =f z(s)v;(s) ds — )\f f K(s, D)z (D)v;(s) dt ds

b b
=f z(8)[vi(s) — )\f K(t, s)v:(t) di] ds.

Because of the symmetry of the kernel, the expression in brackets is y;(s).

Hence
b

, 0) = f 2(Si(s) ds = c.

Iteration is the basis of the following methods:
Successive Approximations. The Fredholm equation can be written
in the form

b
(65) 2(s) = f(s) + f K(s, Oa(l) dt.

This form suggests defining successive approximations 2 (s) to the solu-
tion x(s) as follows:

b
©6) 2 9(s) = 1(s), 20D (sy = f(s) 4+ 2 f K(s, )2 (1) di,
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wherez = 0, 1, 2, ---. One can prove by induction that

(67) 2™ (s) = f(s) + ﬁ;%i f bK(” (s, D)) di,

where the so-called éterated kernels are defined by the relations

(68) KM (s, t) = K(s, t), K@D (s, ¢) =fbK(s, wW)K® (u, t) du,
fori=1,2, ---. It canbe proved that ’

(69) x(s) =nlgxlwx(”) (s) = f(s) + ikif bK(i) (s, t) dt

exists if |N| is less than [(b — a) Max K(s, t)]™*; the series, known as
Neumann's series, converges uniformly for ¢ £ s < b. The function z(s)
defined by eqgs. (69) is the solution of (65) for A restricted as stated. For
the Volterra eq. (3) the Neumann series converges for all A and the solu-
tion is valid for all A, ‘

The Schwarz Constants. Write I{z, z, K} for the quadratic form
Iz, x} defined by eq. (32) to express more clearly the dependence on- K.
The Schwarz constants are then defined as follows:

(70) oy = (x; x); a; = I{x7 x, I{(i)}y (1 = 1: 27 ° '):

where the K are defined by eq. (68). These constants (which obviously
depend on the choice of the function x) are important for the theory as
well as for estimating eigenvalues. Note the following facts, supposing al-
ways that K(s, t) is symmetric:

If P is an arbitrary real number, subject only to the restriction that

(71) A1 — Pai+2 # 0,
and }

: a; — a; 4 P
(72) Q= A

)
@it1 — Qip2P

then the interval with end points P, @ contains at least one eigenvalue pro-
vided that at least one of the following assumptions is satisfied: (a) 7 is
even, (b) K is a positive definite kernel, that is, [{z, x} > 0 unless z = 0.
(For a proof, see Ref. 1, p. 30.) The quotients @ are termed Temple
quotients. Setting P = 0 in eq. (72) leads to consideration of the quotients
Q; = a;_1/a;. It can be shown that the sequence |Qs;_;| is monotone
nonincreasing and converges to |A\; |, where A; is the eigenvalue of smallest
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absolute value. (For further applications of the Schwarz constants, see
Refs. 1, 3, 9.)

Method of Steepest Descent. The basis of this method is the fact
that z is a solution of the Fredholm eq. (2) with symmetric kernel if and
only if x minimizes the expression

b b
@) Fle) = He o) - [ [ K, 000020 dsai - (9.

Let z¢ be a first approximation to z. One seeks a better approximation
21 = 29 + h, and tries to choose h so that in going from zy to z; the value
of F descends as rapidly as possible. With the notation

b
(74) L) =z — f K(s, Dalt) dt,

one finds that
(75) F{zo 4+ h} = F{xo} + (Llxo] — f, h) + 3(LIR], h).

Now if F were a function of a finite number of real variables, the analogue
of the second term on the right side of eq. (75) would be the scalar product
of grad F with h. One therefore defines here

(76) glx] = L{x] — f

as the gradient of F. This suggests that, as in the case of a function of a
finite number of real variables, the direction of steepest descent is given by
the negative gradient; this can be proved to be true. One therefore sets
h = —aglzo], where « is a real constant to be determined. Replace h by
—aglzg] in eq. (75); then Flzo 4+ k] becomes a function of the real variable
a. Now determine o by minimizing this function by the ordinary methods
of calculus. The result for the desired next approximation x; = x4y + h is

Il glzo] |

(Liglaoll, gleah) *

If one repeats the procedure starting with x; instead of xo, one obtains a
new approximation z,; continuing thus, one obtains a sequence 2, 2, - - -,
Tn, -++. If the kernel K is symmetric and positive definite and |\| is less
than |N,| for every eigenvalue \,, then z, converges in the mean to the
solution  of the Fredholm eq. (2). For proofs and details, see Ref. 8 (pp.
103 and 136). The method can also be applied to finding eigenvalues (Ref.
8, p. 142). :

(7) Ty = o — [o].
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1. FUNCTIONS OF A COMPLEX VARIABLE
Complex Numbers. Throughout Chap. 7,z =

denote complex numbers; 7 is the imaginary unit, 1> =

W. Kaplan

7-01
7-04
7-05
7-08
7-11
7-16
7-17
7-18
7-21
7-25
7-28

z+yandw = u +
—1; 2,9, u, v are

arbitrary real numbers; z is the real part of 2, y the tmaginary part of z:

(1)

z = Re (z + ), y = Im (x + 7y).

The complex numbers 2z can be represented geometrically by the points

(z, y) of an zy-plane (or z-plane), as in Fig. 1.

The polar coordinates (r, 6)

of z are termed respectively the modulus (or absolule value) of z and argu-
ment (or amplitude) of z: -

@)

r =|2z| = mod z; 6 = argz = amp z;

7-01

z = r(cos § 4 ¢ sin 6).
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The conjugate of z = x + 7y is:
3) Z=1x—1y.

Algebréic properties of complex numbers are discussed in Chap. 2. In
general, complex numbers are combined as are real numbers, with the rela-

tion 42 = —1 used to simplify the results. Addition is the same as vector
yA
z1+ 29
1 21 z=x+1iy
T
Xy
[/
29 x
X
L ¥3

Fic. 1. The complex z-plane.

addition (Fig. 1). Multiplication of z; by 22 yields a number z; -z, whose
modulus is |2;| - |2z| and whose argument is arg z; + arg z,.
Useful Rules.

2y + 20 = 2 + 2, 2129 = Z1-2,
@ z+ 2= 2Re (2), z —z = 2iIm (2), 2z =|z|?,
|21 + 2] = |21 ]+ 2], l2e — 21l 2 | |22] —|21] ],

2" = [r(cos 6 + ¢ sin 6)]* = r*(cosnf + ¢sinnb), n = %1, £2 ---.

Complex Functions. By a function of the complex variable z will be
meant an assignment of a value w to each z of a certain set D in the z-plane
(see Chap. 1, Sects. 1 and 3); one then writes:

6)) : w = f(2).

(Some formulas will assign several values of w to each zin D. One then
speaks of a “multiple-valued function.”) The set D is generally an open
region (e.g., interior of a circle); see Chap. 1, Sect. 8. From the equation
u 4+ 9 = f(x + 2y) one deduces two equations of the form

(6) w=uy),  v=uvry (&y)inD),
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and conversely a pair (6) of functions of two variables determines a com-
plex function (5) of z.

Limats and continuity for complex functions are defined as for real func-
tions. The phrase “z approaches 2" is interpreted to mean: |z — 24| — 0,
or that the distance from z to zy becomes arbitrarily small. The basic
theorems on sums, products, quotients hold without change from the real
case. Continuity of w = f(2) is equivalent to continuity of both u(z, y)
and v(z, y) in (6).

Each complex function w = f(z) can be interpreted as a mapping (Chap.
10) of the set D into a set £ in the w-plane. If f(z) is continuous, then as
z traces a curve in the z-plane, w traces a curve in the w-plane.

Derivatives of complex functions are defined as for real functions:

Q) 210 = ro) = 1 2L 21O
dz Az — 0 Az

and the formal rules of differentiation carry over. Higher derivatives
I (@), - -- are defined similarly.
Definite integrals of complex functions are defined as line integrals:

®) @) de = f (u + iv)(dz + 5 dy)
C

CY 2z,

= fudx—vdy+i

c

fvdx—l—udy.

c

Here C is a continuous path of finite length from z; to 2. Again the
formal rules carry over.
Examples of Complex Functions are the following:

polynomials: w = apz" + -+ -4 ap_12 4 @y,
ap" +-- -+ a,
bz + -+ by’

exponential function: w = e* = ¢*(cos y -+ ¢sin y) = exp 2,

rational functions: w =

logarithm: w = log z = log |z|+ 7 arg 2 (z = 0),

9)
power function: w = 2* = exp (a log 2),
e — g2 eiz + e t2
trigonometric functions: sin z = g cosz = —
. )
. . . e —e " e+ e *
hyperbolic functions: sinh z = g coshz = —
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inverse trigonometric functions:

1
sin~! —og(zz:l:‘\/l—z)cos z——log(z:!:z‘\/l—z)

.,

The logarithm is a multiple-valued function and can be made single-
valued (so that continuity can be discussed) by properly restricting z and
the choice of arg z. The principal value is:

(10) logz =log |z[+ 4, (>0, -7 <§=m),
a function continuous except for 6 =

If a is a rational number (e.g., 24), 2® has a finite number of values. For
example, 2 = /7 has two Values

2 = pMlozz _ JMlogrtiarg2) _ A/p (URiargz

\/_<cosg+zsm >0r\/_(cos< >+z’sin<g+7r>>,

if 8 is one choice of arg z.
Identities satisfied by the exponential function, logarithm, and trigo-
nometric functions:

(11)

eati = el eUTR = 0% + e%) () = " (n = 1, %2, ),
(12) log (21:29) = log 2y 4 log 25, log 2" = nloge,
sin (z; + 22) = sin 2y cos 2y + cos 2 sin 2o, sin? z -+ cos®z =1, - -+

In the case of the logarithm, the identities are true only for proper choice
of value of each logarithm concerned. The rules for differentiation also
carry over:

d ode
(13) — (" ="2"_1, — e = ¢, —s8inz = cosg, -
dz dz dz

2. ANALYTIC FUNCTIONS. HARMONIC FUNCTIONS

The function w = f(z) is said to be analytic (regular, holomorphie) in
an open region D if it has a derivative f’(2) in D. The function f(2) is
analytic in D if and only if u = Re (f(2)) andv = Im (f(z)) have continuous
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first partial derivatives in D and the Cauchy-Riemann equations hold in D:

ou  Ov ou o
(14) _ =, —_——= =
dr dy ay ox

Furthermore, if f(z) is analytic,

15) 76 ou n 0v dv n . ov
2) = — ] — = — P =,
oz dr Oy dx

If f(2) is analytic in D, the derivatives of all orders of f, u, v exist and
are continuous in D. From eq. (14) one deduces that

16) *u 4 *u 0 % 4 % 0
o a2 o a2
that is, « and v are harmonic functions. Relations (14) are described by
the statement: “u and » form a pair of conjugate harmonic functions.”
One says ‘v is conjugate to u,” but should note that u is conjugate to —v.
In polar coordinates (14) and (15) become

Ju 1 9dv 10u v
(17) T T T = T Ty
ar r 00 r 90 ar
o (OU OV
(s) 7 = ().
ar ar

All the functions (9) are analytic, provided the logarithms are restricted
so as to be continuous and division by zero is excluded. A function ana-
lytic for all z is called an entire function or an integral function; examples
are polynomials and €%,

A function cannot be analytic merely at a single point or merely along
a curve. The definition requires always that analyticity holds in an open
region. The phrases ‘“analytic at z,” or “analytic along curve C” are
understood to mean ‘‘analytic in an open region containing 23"’ or “ana-
lytic in an open region containing curve C.” If f is analytic in an open
region D, then the values w = f(z) form an open region in the w-plane.

3. INTEGRAL THEOREMS

The open region D is termed simply connected if every simple closed path
C in D (Fig. 2) has its interior in D, If D is not simply connected it is
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multiply connected; for example, the region between two concentric circles
is multiply connected; it is doubly connected, because its boundary is formed
of two pieces or ‘‘components.”

Fic. 2. Simply connected region.

All paths in the following line integrals are assumed to be ‘“rectifiable,”
i.e., to have finite length.
Cavucny INTEGRAL THEOREM. If f(2) s analytic in a simply connected

open region D, then
éj (®)dze=0
c

on every simple closed path C in D or, equivalently, f f(2) dz is independent
of path in D.

Morgra’s THEOREM (converse of Cauchy theorem). If f(2) is continuous
in the open region D and

Cgﬁf(z) dz =0

on every simple closed path C in D, then f(z) is analytic in D.
An indefinite integral of f(z) is a function F(z) whose derivative is f(2).
If f(2) is continuous in D and has an indefinite integral F(z), then

(19) | 1) de = Plzs) — Flan);
CcvY 21

in particular, the integral is independent of path, so that f(z) must be ana-
lytic; since F'(z) = f(2), F(2) must also be analytic. If f(z) is a given ana-
lytic function in D, then existence of an indefinite integral of f(z) can be
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proved, provided D is simply connected. In particular,

(20) F(z) = f f(2) dz (20 in D)

has meaning, since the integral is independent of path, and F'(z) = f(z),
so that F is an indefinite integral.

CaucHy INTEGRAL Formuras. Let f(z) be analytic in D. Let C be a
stmple closed path in D and having its interior in D. Let 2z be interior to C
(Fig. 2). Then

1 J(2) 1 J(2)
29) = — dz, "(20) = — _dz,...
Jieo) i o) z — 2o J'(eo) 2mi o) (2 — 29)° ’
@ e
n! 2
(n) P - dz’ e
) = o P
At the heart of this theorem is the special case f(z) = 1:
) dz dz
21r1,=¢ 5 0=¢—_n, ’n=2’3,...
)z — 2 e (2 — 2)
Cauchy’s theorem and integral formulas can be extended to multiply
connected domains. Let D be a domain bounded by curves Cy, Cy, - - -, Cy

F16. 3. Multiply connected region.

as in Fig. 3. Let f(z) be analytic in a somewhat larger region, including
all of D and its boundary. Then

d =0:
(22) m&f(z) z +024§f(z) dz + —l—Cngr)f(z) dz = 0;

that is, the integral of f(z) around the complete boundary B of D is zero,
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provided one integrates on the boundary in the direction which keeps the
region D “on the left”:

dz = 0.
23) ) [1 az

Under the same conditions, if 2 is in D,

f() - f(@)
2 — 2 @, S = 2t Bf (z — zo)"Jrl

CaucHy INEQUALITIES. Under the hypotheses stated above for egs. 21),
let |f(z)| = M on C and let C be a circle with center zq and radius R. Then

@4 f(z0) =

(25) n=0,1,2 ---).

LiovviLLk TueoreMm. If f(2) is analytic for all finite z and | f(2) | £ M,
where M 1is a constant, for all z, then f(2) 1s tdentically constant.

MaxiMmum PrincipLE. Let f(2) be analytic in the open region D. If
If(2)| has a weak relative maximum at a point zo of D (that s, if |f(2)|
< |f(z0)| for z sufficiently close to zy), then f(2) ts identically constant. '

For proofs of these theorems see Refs. 2, 3, 8.

4. POWER SERIES. LAURENT SERIES

Infinite series whose terms are complex numbers are defined as for real

numbers and, in general, the theory of convergence is the same. In par-
o0

ticular, a series »_ b, of complex numbers is termed absolutely convergent
n=1
if the series of real numbers Z|b,| converges. Absolute convergence tmplies
convergence.
Power Series. A power series in 2 has the form

(26) Z ez — 29)",
n=0

where 2z is fixed. Each such series has a radius of convergence p, 0 < p
< 4. If p =0, the series converges only for z = 2z;. Otherwise, the
series converges (in fact, absolutely) for |z — 2¢| < p, i.e., inside the circle
of convergence (whose radius p may be infinite). Outside this circle, for
|z — zo] > p, the series diverges. On the circle: |z — 29| = p, the series
may converge at some points and diverge at others. The radius can be
evaluated by the formulas: :

Cn

27 p = lim

n— o

Cny1
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provided the limit exists, and in any case by the formula

’

1
= lim Hr/—
(28) p 7:.;1’% \n/l(:nl
where lim denotes the lower limit.

Let the power series (26) have radius of convergence p > 0, so that its
sum is a well-defined function f(2) inside the circle of convergence. One
can then prove that the series converges uniformly to f(z) in each circle
|z — 20| £ p’ < p, so that f(2) is continuous. Furthermore, the differen-
tiated series Znc,(z — 29)" " converges uniformly in each circle |z — z|
< p’ < p. From this it follows that the differentiated series converges to
f'(z) and that f’(z) is continuous.” Hence f(2) is itself analytic for |z — 2|
< p. Every power series defines an analytic function inside its circle of con-
vergence. In general, all derivatives of f(z) can be evaluated by repeated
differentiation of the series. One hence concludes that

7™ (20) )

’

(29) Cp =

n!
that is, the power series is the Taylor series of f(z). From this it follows
that equality of the sum of two power series:

=]

D ealz — z9)" = D, Culz — 20)", lz — 20| < p,
n=0

n=0
implies equality of corresponding coefficients:
cn = Ch (n=0;]-:2;'“)'

Now let f(2) be given as an analytic function in an open region D of
arbitrary shape and let zo be a point of D. With 2o as center one can then
construct a circle of maximum radius 79 having its interior in D (Fig. 4).

Tra. 4. Taylor series expansion.
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Within this circle f(2) can be represented by a power series, its Taylor series
about zy:

> f (”)( 20

30) & =2

n=0

(e =2)" |z — 2] <m;

the series may have a radius of convergence p larger than ro. From this
theorem one deduces the following expansions:

® L0 3

e‘=z——'»allz smz—z———+ allz;
n=0M: 3!

22
cosz =1 —a+---,allz;

2 3
31) log(l+2)=z——+—-—- lz[<;
2 3
=1+4+z+224+---, |2|<1;
1—2
E(k — 1
(1+Z)k=1+kz+—(——2'—)-zz+---, lz| < 1.

Laurent Series. A series of form

©
g (z — 20)"

is reducible by the substitution 2’ = 1/(z — 2g) to the form of an ordinary
power series and accordin%oly converges for |2'| < p, i.e., for |2 — 29| > py
= 1 . If now a series Zoan(z — 2o)" converges for |z — zy| < pg and
p1 P< p2, then the sum "

[eo] 0
an(z — 2o)"
z=: (z — zo)” Eo ( 2
has meaning for p; <|z — 29| < pg, that is, in a certain annular region D
(Fig. 5). Here p; may be 0 and p; may be 4. Let the sum be f(z), so
that f(z) is analytic in D. If one writes b, = a_n, (n = 1, 2, --+); then

one has
—1 0 0

(32) f(z) = Z an(z - 20)" -+ Z an(z - ZO)n = Z an(z - ZO)n-

N=—w0 n=0 N=—0
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This series is termed the Laurent expansion of f(z). The coefficients can
be shown to be uniquely determined as follows:
(33) ! J) o 0, =1, £2
a. = — p——r n = y y e
" 2ni o (2 — z)" T Y
where C is any path about the ring, as in Tig. 5.
If f(2) is an arbitrary function analytic in a ring domain D, then one
can compute the coefficients a, by eq. (33) and form the Laurent series,

Fi1e. 5. Laurent expansion.

which will then converge to f(2) in D. In practice there are easier ways of
obtaining the coefficients. One way is to write f(z) as the sum of two func-
tions fo(2), f1(2), the first analytic for |z — 29| < ps, the second analytic for
|z — 29| > p1 and approaching 0 as |z| — . TUnder the substitution
¢=1/(z — zou)o, f1(2) becomes a function of { analytic for || < 1/p;, so

that f,(z) = glbng“” or

(34 OEDY

n=1 (Z - zO)n

For f»(2) one has a Taylor series about zg. Addition of the two series pro-
vides the desired Laurent series. For example, if f(2) = 1/(z — 1)(z — 2)
and D is the ring 1 <|z| < 2, then one can choose f1(z) = —1/(z — 1),

fo() = 1/(z = 2).
5. ZEROS. SINGULARITIES. RESIDUES. ARGUMENT PRINCIPLE

Zeros. Let f(z) be analytic in domain D and let f(zy) = 0. Then 2, is
called a zero of f(2). If f(2) is not identically zero, then each zero has a

n

|2 — 20| > p1.
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definite order (or multiplicity) =, a positive integer, and f(2) = (¢ — 29)"g(2)
where ¢ is analytic in D and g(z9) # 0. The order n is the smallest value
of k such that f%®(z5) % 0. If f(2) is not identically zero, then each zero
of f(2) is vsolated; that is, for each zero zo one can choose a circular region
|z — 29| < @ containing no other zero.

Singularities. Let f(z) be not identically zero and have a zero of order
nat 2. Then h(z) = 1/f(2) is analytic in some circular region |z — 23| < a
except at the center zgp. By definition, A (z) has a pole of order n at 2. One
can write: h(z) = (z — 20) "p(2), where p(z) is analytic for |z — 2| < a
and p(ze) # 0. Since f(zg) =0, |h(z)| — © as z — 2z;. One conven-
tionally assigns the value « to h(z) at zo.

In general, let f(z) be analytic in a punctured disk: 0 <|z — zol < a,
but not at z5. Then f(2) is said to have an isolated singularity at z,. One
can form a Laurent expansion of f(2) in the ring domain p; = 0 <|z — z|
< a = p3. Three cases can then arise.

I. No negative powers in the Laurent series. Then

fz) = Zoan(z - zo)",

so that f(z) can be treated as a function analytic for |2 — 29| < a without
exception. The singularity is termed removable. The new value of f(z) at
z9 is ap = lim f(z2). :

2—20
I1. A finite number of negative powers in the Laurent series. Here, for
proper choice of N, '

[ =

(z — 20" z—2

+ao+al(2 —zo) +--

(35)
g9(2)

" 9(z0) = a_n # 0.
— 2

Hence f(z) has a pole of order N at zo.

II1. Infinttely many negative powers in the Laurent series. In this case
f(2) is said to have an essential singularity at zo.

By a theorem of Riemann, the three cases can be distinguished as fol-
lows: 1. |f(2)| is bounded for 0 < |z — zo| < b for some b. II. |f(z)| — o
as z — 2. IIL Neither [f(2)| nor 1/|f(2)| is bounded in each punctured
disk 0 <]z — 29| < b. In Case III, by a theorem of Weierstrass and
Casorati, f(2) comes arbitrarily close to every complex number in every
neighborhood of z.
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If f(2) is analytic for |z| > R, then f(2) is considered to have an isolated
singularity at z = . A Laurent expansion is available, with p; = R and
p2 = ». The classification is similar to the above, with “negative” replaced
by “positive.” Also the type of singularity of f(2) at « is the snme as that
of f(1/2) at z = 0.

A function analytic for all finite 2z except for poles is termed a meromorphic
function.

Residues. The residue of f(z) at an isolated singularity z, is defined as

R = ! d
(36) es 152, 0] = 3= f 1(@) d,

where C is a circle |z — zo| = ¢, enclosing no singularity other than z, and
the integration is in the counterclockwise direction. The residue of f(2)
at z = o, denoted by Res [f(2), =], is defined by the same integral, where
C is a circle |z| = ¢ outside of which f(z) has no singularity other than o«
and where the integration is in the clockwise direction. If ) is finite,

(37) Res [f(2), 20] = a—,

where a_; is the coefficient of (z — z;) ™! in the Laurent expansion about
zo. If zpis o, '

(38) Res [f(2), ©] = —a_y,

1 in the Laurent expansion of f(z) for

where a_; 1s the coeflicient of 2z~
|z| > R.
The Caucny REsIDUE THEOREM asserts that, if f(2) is analytic in an open

region conlaining the path C, then
(39) éf(z) dz = 2mi- (sum of residues of f(z) inside C),
c

provided f(2) s analytic inside C except for a finile number of isolated singu-
larities. Similarly,

(40) SBf(z) dz = 2xi-
¢ (sum of residues of f(z) outside C, including Res [f(2), «]),

provided f(2) is analytic oulside C except for a finite number of isolated singu-
larities. Hence, if f(2) is analytic for all z, except for a finite number of singu-
larities, the sum of all residues of f(2), including that at o, s 0.
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Calculation of residues may be simplified by the following rules:
1. At a pole zq of first order,

(41) Res [f(2), z0] = lim (z — 20)f(2).

2. At a pole zg of order N (N = 2,3, ---),

. g ()

(42) Res [f(2), 20] = 3:12 m.
where g(z) = (z — 20)"/(2).

3. Let
(43) () = 28

(2) = 73@’

where A(z) and B(2) are analytic at 2zo. If A(29) = 0 and B(z) has a zero
of first order at zp, then

“4) : Res /), 1] = e

B'(20)
If A(zy) £ 0 and B(2) has a zero of second order at zy, then
64'(20) B" (z0) — 2A(20)B""' (20) .

3[B" (z0)]?
If A(zp) # 0 and B(z) has a zero of third order at zg, then
(46) Res [f(2), 2ol

1204 B’ 2 __ 60A/B//1Biv — 124 B'""RB? + 154 B*" 2

= 40B"" 3

where all quantities are evaluated at zo. If A(2) has a first order zero at
2o and B(z) a second order zero, then

(45)  Res [f(2), 20] =

24" (zq)
B (20)
ARGUMENT PRINCIPLE. Let f(z) be analytic in an open region D containing

the stimple closed path C; let f(z) have at most a finite number of singularities
tnside C, all of which are poles, and let f(z) = 0 on C. Then

1 1@
(48) 2—#2'0 f(z) dz

= number of zeros of f inside C — number of poles of f inside C,

(47) Res [f(2), 2] =

where zeros and poles are counted according to multiplicity.
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The left-hand side of eq. (48) is termed the logarithmic residue of f(z) on
C. Tt can be written as

1
— d log f.
27 ¢ ef

As z traces C, w = f(z) traces a path C, in the w-plane. The integral
f d log f(2) equals 7 times the total change in the argument of w as the

path C,, is traced. Hence it equals 27¢ times the “winding number” of
C about w = 0, i.e., the number of times that C,, effectively winds about
w =. 0 in the positive direction.

TaeE FUNDAMENTAL THEOREM OF ALGEBRA (see Chap. 2). From the
argument principle one deduces that every polynomial in z of degree N has
precisely N zeros in the complex plane.

Roucu®’s THEOREM may also be deduced: if both f1(z) and fs(z) are
analytic in a simply connected open region containing the simple closed
path C and |f1(2) — f2(2)| <|f2(2)| on C, then fi(2) and f5(z) have the same
number of zeros inside C.

Evaluation of Definite Integrals by Residues. A great variety of
definite integrals can be evaluated with the aid of residues. TFor example,
if R(u, v) is a rational function of u and v, then

I 2 -1 224+ 1\de
(49) f R(sin 8, cos 6) df = é R ( ) )
1]

i1 2z 2z 12
o=

and the integral on the right can be computed by residues. Also, in general
(50) f f(z) dz = 2x¢ {sum of residues of f(z) in the half-plane y > 0},

provided f(z) is analytic for y = 0 except for a finite number of points in

y>0, f f(w) da exists and

lim f f(Re®)Re® do = 0.

R—w Jyg

The last condition is satisfied if f(2) is rational and has a zero of order
greater than 1 at «, or if f(z) = ¢™%g(z) where m > 0, g(2) is rational, and
g(z) has a zero at . For further applications one is referred to Chap. VI
of Ref. 12.
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6. ANALYTIC CONTINUATION

Let f1(2) be analytic in the open region Dy, fo(2) in Ds. If Dy and Dy
have a common part and f1(2) = f3(2) in that common part, then f3(2) is
said to be a direct analytic continuation of f1(2) from D; to D,. Given
f1®), D1, D, the function f2(2) may or may not exist; however, if it does
exist, there can be only one such function (unigueness of analytic continua-
tion).

Let Dy, Dj, - - -, D, be regions such that each has a common part with
the next and let f;(z) be analytic in D; (j =1, ---, n). If f;(z) = f;41(2)
(j=1, ---, » — 1) in the common part of D;, D;,, then one says that

f1(2) has been continued analytically from D, to D, via Dy, ---, D,_; and
calls f,(2) an (indirect) analytic continuation of f1(2). Given fi(z) and the
regions Dy, - -+, D,, there is at most one analytic continuation of f;(2) to
D, via Dy, -+, D,,_;. There may exist other continuations of fi(z) to D,
via other chains of regions.

Given a function f(z) analytic in region D, one can form all possible
continuations of f(z) to other regions. The totality of such continuations
is said to form an analytic function in the broad sense (Welerstrassian ana-
lytic function). In this sense log 2z, v/, sin™! z can each be considered as
one analytic function. The importance of the concept is illustrated by the
fact that every identity satisfied by f(2) will be satisfied by all its analytic
continuations. The term “identity”’ includes linear differential equations
with polynomial coefficients.

Example of Analytic Continuation. The functions

fl(z) =n§02n+1’ Izl< 27
=+
f2(5)=7§0—‘3—n;1‘“’ |z 4 1] <3

are analytic continuations of each other. Indeed, both are power series
expansions of f3(z) = 1/(2 — z) and have the same sum for |z| < 2. Also
fo(2) can be regarded as the Taylor series of fi(z) about z = —1. This
series happens to converge outside of |z| < 2 and hence provides an ana-
Iytic continuation. ,

Analytic Continuation from Reals. Let fi(z) be defined only for

=0,a <z <b,ie., only when z is real and between a and b. Let f5(2)
be analytic in an open region D which includes the interval of definition
of f1(2). If fo(z) = f1(2) on this interval, then f5(2) is said to be an analytic
continuation of f(z) from reals. Again continuation, if possible, is unique.
Examples. ¢* as a continuation of €%, sinz as a continuation of sin z,
log z as a continuation of log z.
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7. RIEMANN SURFACES
The function w = 2*¢ can be considered as an analytic function in the
broad sense; that is, it is formed of several functions which are analytic
continuations of each other. The resulting totality has the defect that it
is two-valued: for each 2, there are two possible values (except for z = 0).
To remedy this defect one regards w = 2’ as a function defined not in the
z-plane, but on a Riemann surface over the z-plane. In this case, the Rie-
mann surface can be constructed as follows. One takes two copies of the
z-plane, calling them Sheet I and Sheet II. Each sheet is considered as
cut open along a branch line, the positive real axis. Sheet II is placed
directly over Sheet I, with axes in the same position, and then the two
sheets are attached by joining upper edge of the cut line of each sheet to
the lower edge of the cut line of the other, as suggested in Fig. 6. Un-

z-plane
0
',0
! Sheet IT
~/ 7
/<] Sheetl
F16. 6. Riemann surface of 2%, F1c. 7. Branch line for w = 2%

fortunately this cannot be carried out in space. For each point in the
‘z-plane, one has then two points in the Riemann surface, one in each sheet.
As one traces a path about z = 0 in the z-plane, one can describe a corre-
sponding path in the Riemann surface by assigning a sheet to each posi-
tion; no change of sheet can be made except when crossing the branch
line, and a change of sheet must be made at such a crossing (Fig. 7). A
closed path in the z-plane will not in general lead to a closed path on the
Riemann surface. A path which closes up after two encirclements of the
origin will be closed on the Riemann surface. The origin itself appears as
a point common to the two sheets and is termed a branch point.

On the Riemann surface just constructed one can now define v/z as a
single-valued function as follows: v/z = v/r¢?/% 0 < 6 < 2r, on Sheet I;
z = /7e%% 2r <0 < 4=, on Sheet II. Above the branch line continuity
determines the proper value to be assigned.

The procedure described can be generalized to

w= Ve, w=V (- 1e—-2)-3)
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and to all algebraic functions. In general n sheets will be required and
several branch lines and branch points. The surface for

w=V(E—-1)E—-2—3)

is suggested in Fig. 8.
The procedure can be extended to nonalgebraic functions, but in gen-
eral infinitely many sheets are required. An important case is log z, for

) z-plane : z-plane
1 11 1 I
. -II-1 0
1 il 1 I
Fic. 8. Riemann surface of F16. 9. Riemann surface of
w=[@—1)(— 2 — 3 log 2.

which sheets 0, &I, =11, - - - are needed, as in Fig. 9. In this case z = 0
is a logarithmic branch point and is not regarded as a point of the Riemann
surface.

8. ELLIPTIC FUNCTIONS

Let f(2) be a meromorphic function (analytic except for poles); f(z2) is
said to have period w, w # 0, if f(z + w) = f(2) for all z; f(2) is called an
elliptic or doubly periodic function if f is not constant and has periods vy, ws
and if w;/ws is not real. It then follows that n10; + news are also periods,
for every choice of the integers n;, ne. For proper choice of w;, wy these
are all the periods of f and it will always be assumed that w;, ws are so
chosen. The numbers @ = nyw; + ngwe form the vertices of a paving of
the plane by parallelograms, any one of which can be chosen as a period
parallelogram of f(z); it is convenient to exclude the points on a pair of
adjacent sides from each period parallelogram. It can be proved that f(z)
has a finite number N of poles (counted according to multiplicity) in a
period parallelogram; N is the order of f(z) as an elliptic function; N is
always at least 2. In general, f(z) — a has N zeros in the parallelo-
gram.

Jacobian Elliptic Functions. Examples of elliptic functions are pro-
vided by the functions

snz cng dnz
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of Jacobi. These can be defined as follows. For fixed k5,0 < k < 1, let

(61) F(w) “fw——‘—dt (w) —fw\/l — k2sin?¢d
(w) = y 1, = .
I . T et E(w , sin” ¢ di;

F and E are called the elliptic integrals of Legendre of first and second type,
respectively. The equation 2z = F(w) can be solved for w to yleld a mul-
tiple-valued function w of z, w = am z; finally

sin (am z), cnz = cos (am z),

sn z
52 i
(52) dnz=V1—Fk%*sn?2.

Despite the multiple-valued operations, the functions sn z, cn 2, dn z are
defined as single-valued functions, analytic except for poles and with power
series expansions about z = 0:
3
snz=z— (1+k2)§+---,

22 2t
= — 2 — TS
(53) enz =1 2!+(1+4k)4!+ )
dnz=1-"%
nz = — 2! +...

All these funetions depend on the parameter k. They have periods w;, ws
as follows; for snz, w; = 4K and ws = 26K’; for cnz, w; = 4K, wy =
2K + 2(K’; for dn z, w; = 2K, wp = 42K’; here

/2 di
(54) K = __, K=rp (I)
o Vecos?t 4 k®sin® ¢ 2

Hence sn 2, cn 2, dn z are elliptic functions. Tables of the functions F, E,
sn z, en 2, dn z are available; see, for example, G. W. and R. M. Spenceley:
Smithsonian Elliptic Function Tables (The Smithsonian Institution, Wash-
ington, 1947), and L. M. Milne-Thompson: Jacobian Elliptic Function
Tables (Dover, New York, 1950). :

It can be shown that the most general elliptic functlon is expressible
simply in terms of sn 2z and enz. Furthermore, a large class of integrals,
called elliptic integrals, can be expressed in terms of the functions F and E
and the integral of third kind:

w dt
(55) m(w) _fo 1+ Zsin? )V1 — k2 sin® ¢
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which 'depends on & and the real parameter «. The general elliptic integral

has form f R(z, V P(z) ) dz, where R(z, w) is a rational function of z and

w, and P is a polynomial of degree three or four with distinct roots.

In the theory of elliptic functions a number of additional functions ap-
pear, of which the following are important definitions and relations:

The Weierstrass ®-Function.

1
56 ®(z — ! [ ]
(56) @ = + ; (z — Q)? e
Here Q stands for nyw; + newe and 2’ indicates a sum over all choices of
Q other than 0 = Ow; + Ows; w; and ws are complex parameters, assumed
to have nonreal ratio, and ®(z) is elliptic with periods w;, ws.
The Weierstrass Zeta Function and Sigma Function.

o o= fros-tep[Lrael]

R L R E

The ¢-function is meromorphic but not elliptic; the o-function is an entire
function.
The Jacobi Theta Functions.

9]
00(2) = 14+ 2D (—1)"¢™ cos 2mnz,

n=1

0:(z) = 2 2 (—1)"" TP sin 2n + 1)me,
n=0
(59)
05(2) = 2 > ¢ 9" cos (2n + 1)wz,
n=0

o0
05(2) = 1+ 2 Y ¢* cos 2mnz.
n=1
Here ¢ is a complex parameter of form ¢™", where r has positive imaginary
part. If 7 is chosen as wy/w;, then one has the identity:

@ t(Gw) _Z_>
(60) a(z) = 710 exp [——wl z ] 01 <w1
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There are other o-functions ¢q(2), @ = 1, 2, 3, defined by the equations
§(3e1) 2] (z>
ex z° | 0, — =123
0e+1(0) P [ w1 T\ (e 3,

where 6y is interpreted as 6. -
The Jacobian elliptic functions are expressible in terms of the §-functions
or in terms of the o-functions. Let

(61) oa(2) =

02(0) 8,(0) 12
62 k= [—— , K = [ ]
( )‘ 03(0)] 03(0)
(63) K = ’—;[03(0)]2, K = —irK.
Then

(64) cnz =

(57)
N .
dnz = \/;cj—i=g2(z).

2 g3 (Z)
b0 (5&)

Here ¥’ = V'1 — k? and K, K’ are related to k by eqs. (54). The functions
sn 2z, cn z, dn z depend on k as required.
For further theory of elliptic functions and integrals see Refs. 4, 5, 7,

10, 12.

9. FUNCTIONS DEFINED BY LINEAR DIFFERENTIAL EQUATIONS

Attention will be restricted to the equations of second order, although
most of the results can be generalized to equations of higher order. I'rom
the theory of real differential equations one knows that the homogeneous
linear equation

(65) ao(@)y” + ar(@)y’ + ax(x)y = 0
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has, in general, two linearly independent solutions. When the coefficients
a;(z) are, for example, polynomials, the solutions can be obtained as power
series (see Chap. 5, Sect. 7). Such power series are best studied from the
point of view of complex variables. Accordingly, one drops the restriction
to real variables and considers a differential equation

dPw

d
©) PO+ PO+ p@U=0 (o) 0.
z dz

The coefficients p;(z) are assumed to be analytic in an open region D and
the solutions w(z) sought are to be analytic at least in a portion of D. By
dividing by po(z) one obtains an equation

d*w dw
(67) — + @1(2) — + ¢(5)w = 0,

dz dz

where the ¢;(z) are analytic except for poles in D.

Series Solution at Ordinary Points. A point z; of D at which all
g;(2) are analytic is called an ordinary point of eq. (67). If the ¢;(z) are
expanded in power series about an ordinary point zy and w(z) is written as
a power series with undetermined coefficients, substitution in eq. (67)
yields a formal solution for w(z). In thissolution ¢y = w(zo) and ¢; = w’(2¢)
are arbitrary, and the later coefficients are expressible in terms of cg, ¢; by
recursion formulas; one can write w(z) = cowi(2) + cywe(2). One can
prove that the general formal solution converges in a neighborhood of z,
and represents an analytic solution of eq. (67). Furthermore, the general
solution can be continued analytically throughout D, minus the poles of
q1(2), g2(2), and it remains a solution under such continuation.

Singular Points. A point zo at which ¢; or ¢» has an isolated singu-
larity is called a singular point of eq. (67). One can study the solutions
near a singular point zo by selecting a nearby ordinary point z;. If there
are no singularities other than zo in the circle |z — 29| < 2|29 — 2|, then
each series solution about z; will converge for |z — 21| <|z9 — 21| and can
be continued analytically in the ring domain 0 < |z — 29| < 2|2y — 2, ], as
far as desired; the resulting function is then multiple-valued. One can
also seek series solutions of form

0
(68) ( — 20)* 22 bale — 20)",
N=—owo
where p is allowed to be an arbitrary complex number; such a solution
exhibits explicitly the multiple-valued behavior near z,. One can show
that a solution of form (68) does exist. A second linearly independent
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solution can also be found, either of form (68) with a different choice of u,
or of form

(69) (2~ z0)*{log (¢ — 20) 20 calz — 20)" + 20 dulz — 20)"}.

Regular Singular Points. If the Laurent series which appear in the
two solutions have only a finite number of negative powers, the singular
point 2o is termed regular; in this case (68) can be written in the form

(2 — 20)°[1 + 22 balz — 20)".
n=0
It can be shown that 2z, is a regular singular point precisely when
(z — 20)q1(2) and (2 — 2)%g2(2) are analytic at z5. One can extend the
definition to the case zp = ; this is an ordinary point or regular singular
point according as the substitution { = 1/zleads to an equation in ¢ having
an ordinary point or regular singular point at ¢ = 0.

If every value of z, including o, is either an ordinary point or a regular
singular point, then the differential equation (67) is said to be of Fuchsian
type. Since the regular singular points are isolated, there can be only a
finite number of singular points in all, and ¢;(z), go(z) must be rational
functions of z.

Hypergeometric Equation. Let eq. (67) now be an equation of
Fuchsian type. If there are at most two singular points, it can be verified
that the solutions are elementary functions. If there are three singular
points, then by a Lnear fractional transformation 2’ = (az + b)/(cz + d)
these can be placed at 0, 1,  and by a substitution w = z*(1 — z)*w’, the
equation can be reduced to the form

2

d*w dw
(70) 21—z —5+ {c—(@a+b+ 1)z} — — abw = 0,
dz dz

known as the hypergeometric equation. If ¢ is not O or a negative integer,
one solution valid for |z] < 1 is the hypergeomeltric series

a-b +a(a—|—1) b(b—l—l)

71 Fla,byc;2) =1+ —2 cees
() @ ) +1-c 1-2 c(c—l—l)

a second solution is found (for ¢ not an integer) to be

(72) 27Fla—c+1,b—c+1,2 —c;2).

The Legendre Equation.

2w dw
(73) (1 - zz) — - 22 + n(n + Dw = 0.
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This has regular singular points at -=1 and <, and is reducible to the
hypergeometric equation. Two linearly independent solutions are found
to be

P,(z) = F(n+ 1, —n, 1; % — %z)

(74) 0.0 % D(n41) 1 F(n-}—l n+ 2 2n—|—3-1>
T e T At N 2 2 2 2)

P,(2) is known as the Legendre function of degree n of the first kind; when

n is a positive integer or 0, P, reduces to a polynomial, the Legendre poly-

nomial of degree n; Q,(2) is called the Legendre function of second kind. ~
The Lamé Equation.

75) d2w+1<1 + 1 + 1>dw
d?2 2\z2—a z—0b z-—c¢/ dz

_ h 4 n(n+ 1)z
41— -be—o

This has regular singular points at a, b, ¢, . For details concerning its
solutions, in particular, the Lamé functions, one is referred to Chap. 23 of
Ref. 12,

A number of equations possessing irregular singular points are of im-
portance in applications:

The Bessel Equation.

(76) Z—d—+ - nPHw =
r4

This has a regular point at 0, an irregular point at «. One solution is the
Bessel function of order n: ’

0 . 1 1 2 n+2k
77 Ju(2) = -1 (—) .
& ) kgo( ) Tk+ 1) T(k+n+ 1) \2
The functions J,(2) and J_,(z) provide two linearly independent solutions,
unless n is an integer. If n is a positive integer, two linearly independent
solutions are J,(z) and the Hankel function

= (= DFe/2)m e z ol }
(78) Yn(e) ,EO k\(n + k)! ey m§+1 m

n—1 (n — k- 1)| <Z>—n+2k
2 ’

=0 k!
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where v = 0.5722 - - - is Euler’s constant (Sect. 10). When 7 is not an
integer, Y ,(2) can be defined more simply:

Jn(2) cos nr — J_(2)

(79) Ya(z) = 2mwe™” -
sin 2nwr
The Mathicu Equation.
- dPw
(80) - ) -+ (¢ + 16g cos 2z)w = 0.
2

Here a and ¢ are constants and there is one irregular singular point at
. The solutions are hence entire functions. For certain choices of a and
g, €q. (80) has solutions which are periodic and either even or odd; thesc
solutions are called Mathieu functions. For details on these functions one
is referred to Chap. 19, Ref. 12.

The Confluent Hypergeometric Equation.

d*w
dz?

This has a regular singular point at 0 and an irregular singular point at co.
One solution is given by Whittaker’s function

k 1__ 2
b R I
4

2

(81)

1
(82) Wim@ = — —— Dk + & — m)e™52
27

—k—Y+m ¢ k. —t
(=0 1+- et dt,
C z

where C is a path from + to e along the “upper edge’ of the positive
real axis, then around the circle |¢| = e in the positive direction, then from
t = e to = along the lower edge of the positive real axis. The integrand
is single-valued if one chooses arg (—t) to vary from —= to 4+ on the
path, if ¢ = —z is outside C, and arg (1 4 t/z) is chosen as that branch
which — 0 as £ — 0 inside C. The definition fails when &k + 14 — mis a
negative integer, but can be modified to cover this case (see Chap. 16 of

Ref. 12).
10. OTHER TRANSCENDENTAL FUNCTIONS

Other analytic functions of importance in applications are the following:
The Gamma Function.

(83) I'(z) = f Qoe_’t”‘l dt.
0
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This definition holds for Re (2) > 0, but I can be continued analytically
and becomes a meromorphic function with poles of order 1 at 0, —1, —2,
Identities satisfied by I'(z) are the following:

(84) T4+ 1) =2I'(z);
(85) T(n+ 1) = n! n=1273, ---);
(86) T@T(~2) = — ——— ;
z sin 72
nn?
(87) : T(z) = lim

n—wg(z41) - (z-[—n);
(88) 1 Zeyzﬁ [(1 + f) e—~z/nj|,

% n=1 n

where

. - 1
(89) v = lim (E — — log m> = 0.5772 156649 - - -

m— © \p—=1 N
is the Euler-Mascheroni constant.
The Beta Function.

1 |
©90) Bz, w) = f =11 — §»=d,  Rez> 0, Rew > 0.
0

This is expressible in terms of the I'-function:
. I'(2) T (w)
h 'z + w)

The Incomplete Gamma Function.

(91) B(z, w)

92) v, 2) = f 1 d,  Rea> 0.
0

This is expressible in terms of the Whittaker function of the preceding
section:

(93) 'Y(ay Z) = F(a) - z%(n_l)e_%zw}é(n—l)'%n(z)-
The Error Functions.
(94) Erf (2) = f e~ di;
0

(95) Erfe (2) = f et dt = 1—2r — Erf (2).
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These functions are also expressible in terms of the Whittaker function:
(96) Erfe (2) = e e W_y, ().

The Logarithmic Integral Function.

. z dt 1 1
©7) li 2) = f (= log )Wy 0(— log ).
o logt
The Exponential Integral Function.
w0 ,—t
(98) Ei(z) = —f -~ dt = 1i (e%).
The Sine and Cosine Integral Functions.
. sin ¢ S
(99) siz =f _t_d = — [Tl (iz) — Ei (—12)],
. #sin ¢ T .
(100) Slz—f —dt = = + siz;
l 2
cos ¢ L. . .
(101) Ciz = —f ——dt L[Ei (¢2) + Ei (—12)].

In eq. (97) z is first taken as real and positive, but analytic continuation
then gives meaning to the function, as a multiple-valued function, for all
2z % 0. Similarly, in eq. (98), z is first to be real and negative. The func-
tions si z and Si z are entire functions; Ci (z) — log z is also entire.

The Riemann Zeta Function.

21
(102) ¢ =2 —  Rez>L
n=1n

This function ean be continued analytically and becomes a function single-
valued and analytic for all z except z = 1, where {(2) has a pole of first
order. One has the integral representation:

w gz—1

(103) $(@) =—— dz, Rez > 1.
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Remark. The purpose of this chapter is to provide a survey of opera-
tional methods. The method which has proved most useful is that of the
Laplace transform, which is mentioned only briefly in this chapter and is
discussed in full in Chap. 9.

1. HEAVISIDE OPERATORS
Definitions. For functions of a real variable ¢ one writes:
(1) Dsi, D2Ed_2,...DnEd_n
dt dt? ’ "
and defines a polynomial differential operator
¢(D) = aoD"* + ;D" ' +-- -+ ay_1D + a,
8-01
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by the requirement that for every f(t)

af daf
) o(D)f = (apD" + -+ au)f = ao o +ota t+ anf,
wherever f has derivatives through the nth order. The coefficients aq (0),
ay, - -+, a, may depend on ¢, but for most applications they are constants.

The integer » is the order of the operator.
The sum and product of polynomial operators are defined by the rules:

®3) [61(D) + 62(D)]f = 61(D)f + ¢2(D)f
(4) [61(D) - $2(D)]f = ¢1(D)[p2(D)f].

It immediately follows that addition is the same as for ordinary poly-
nomials; the same is true of multiplication provided the coefficients are con-
stants. For example,

(D+1)D-—-1)=D%—-1,
D+t —1t) =D? — (2 +1).
In general, the polynomial operator is linear:
(5) ‘ d(D)(crf1 + cafz) = c16(f1) + ca9(f2),

provided ¢; and ¢, are constants.
The reciprocal or tnverse of a polynomial operator is defined by the con-
dition:

(6) g(t) = ——f(t) if $(D)g(t) = f(2)
' o(D)
and g(0) =0, ¢'(0) =0, ---, g™ 1(0) = 0, where n is the order of ¢.
Thus [1/¢(D)]f is the solution of the differential equation
dn
) G ~+--+ an—l -I- a,x = f(t)

satisfying the initial conditions = = 0, dx/dt =0, -, d /A" = 0
for t = 0. It is assumed the differential equation is such that there is a
unique solution satisfying the initial conditions; this is surely so if aq, - - -,
a, are constants and f(¢) is continuous for all £. One defines the sums and
products of reciprocal operators by the equations:

®) | = ]f——f+ L
¢1(D) ¢2(D) o1 ’

©) [¢>1(1D) ' ¢2(1D)]f - ¢1(1D) [qbz(lD) f]'
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Addition is commutative: (1/¢;1) + (1/¢2) = (1/¢2) 4 (1/¢1), as is mul-
tiplication, provided the coefficients are constant.
The ratio of two polynomial operators is defined by the equation:

$1(D)
¢2(D) b2 (D)f]

Here the order chosen is essential: it is not true that

(10) f=am |

(1) (D) [ 6D,

1]
$2(D) ¢2(D)
even if the coefficients are constant. All operators defined thus far are
linear.

Integral Representation of Inverse Operators with Constant
Coeflicients. One has the formulas:

1 t

(12) 570 = [ s au,

1 ¢
(13) == af(t) Skl ke 0L
(14) — ) = f lmﬂu) du

(D - a) o (k—=1! ’

where a is constant and £ = 1, 2, ---. Now ¢(D) can be factored as in
algebra:
(15) ¢(D) = ao(D —r)(D —1rz) ++- (D —14)
where r, « -+, 7, are the roots of the characteristic equation
(16) #(r) = agr” + -+ an_yr + a, = 0.
Correspondingly,
a7) - : ;.

¢(D) ag(D — 1) -+ (D — 1)
Thusif n = 2

1 1 1 ent pt u
= = — (—Tl+r2)u —Tryv
qS(D)f ao(D — 1) [(D — 1) f] P j; e~ "°f(v) dv du.

In general, computation of [1/¢(D)]f is reduced to a repeated integration.
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If ¢(r) has complex roots, quadratic factors appear in eq. (17); for these one
has the rule:

(18)

1 e

ek KRt UG CL

If 1/¢(D) is expanded in partial fractions as in algebra, then the corre-
sponding operator identity is valid; for example,

1 ; (1 1 1 1)f
DP—1" \2D—-1 2D+1
t

t
1 —u . 1,— U
ze‘fo e Y(u) du — e tfo €*f(u) du.

Heavisipe ExpansioNn THEoREM. More generally, a ratio ¢;(D)/¢2(D)
can be replaced by its partial fraction expansion. If in particular the de-

gree of ¢ exceeds that of ¢1, and ¢o(r) has simple roots ry, ra, « -+, 7n,
then by Chap. 7, Sect. 5,

$1(r) 2opr(re) 1

> - ,

$o(r) k1 @2(r) v — 1k
(19)

$1(D) _ 2L o1(rr) 1 )

¢2(D) k1 d'2(r) D — 7

This is in essence the Heaviside expansion theorem.
Power Series Operators. The formal relation

1 1 1 D D?

D—a ( D> a &
—al1 ==

does not agree with the definition of 1/(D — a). However, if the operator
is applied to a polynomial in ¢, one obtains a particular solution of the
corresponding differential equation (with modified initial conditions). For

example,
( 1 D D? >t2 2 2 2
a a d T4 @ &
is a solution of
dx
— —axr = {2
dt

for which z(0) = —2a73.
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One can also expand in inverse powers of D:

1 1 a a?

D—a D_I-D2+D3

(20)

In this case the rule can be proved to be correct.
0
The power series Y h"D"/n! can be interpreted as the operator ¢*P.
0
One then finds, under appropriate conditions,

<">< D 1o
(21) Pf = Z = f(t + h).

2. APPLICATION TO DIFFERENTIAL EQUATIONS

The general solution of a linear differential equation,

(22) ¢(D)x = f(1), ¢(D) = apD" +- - -+ ay,

is formed of the complementary function z.(t), which is the general solution
of the homogeneous equation ¢(D)x = 0 and of a particular solution x,(t)
of the given equation:

(23) x = x(t) + xp(t)

[cf. Chap. 5, Sect. 3. The Heaviside operators provide simple ways of
finding x,(t), namely as the function

(24) zp(t) = m J@®;

this is the solution with zero initial conditions. If 1/¢(D) is expanded in
partial fractions, one can then apply the integral formulas (12), (13), (14),
(18).

The procedure can be extended to simultaneous equations. For example,

Dz + (D — 1)y = F(t)
(D + Dz + 2Dy = Q(t)
can be solved formally:
2 py-2"Lew,  y=—nGm - 2T
D? 41 D2 +1 D? 41 D? 41

and it can be verified that these provide the solution for which z = 0,
y = 0 whent¢ = 0.

r =

F(t)
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3. SUPERPOSITION PRINCIPLE. RESPONSE TO UNIT FUNCTION AND
DELTA FUNCTION

The Heaviside unit function u(t) is defined to equal 0 for { < 0 and to
equal 1 for ¢ = 0. The solution of the differential equation ¢(D)x = u(f)
with zero initial values, i.e., the function (1/¢(D))u(t) = A(t) is known as
the tndicial admaittance or step response.

The superposition principle states that the response of a linear system to
a linear combination c¢f;(#) + cof2(f) equals the corresponding linear com-
bination c¢yx;(f) -+ caxo(f) of the responses z;(¢) to f1(f), z2(t) to folt). In
the typical case x(f) and f(¢) are related by a differential equation ¢(D)z =
f(t) and the superposition principle is equivalent to the statement that
1/¢(D) is a linear operator.

One can apply the superposition principle to show that (when ¢(D) has
constant coefficients) the response to a general f(¢) is deducible from the
indicial admittance, i.e., the response to u(t). Indeed, the response to
u(t — h), for h = 0,1is A(f — h); one can approximate f(¢) by a linear com-
bination Zgcru(t — i), where ¢ = f(tx+1) — f(tx). A passage to the limit
gives the Duhamel theorem

t
25) 2() = f F(A'(E — ) ds.
(1]

[It is assumed that f(¢) is O for { < 0 and the solution z(f) has 0 initial
values]. If f(¢) is constant, equal to 1/e¢ for 0 < ¢ < ¢, and then equal to 0
for t > ¢, the response is [A(t) — A(t — ¢)]/e. The limiting case of such
an f(f), as e — 0, is an “ideal function,” the delta function §(t), also termed
the unit smpulse funciion. The response to §(t) is interpreted as A’(f) =
h(®). Accordingly,

(26) z(t) = j; F(S)h(E — s) ds.

For some linear systems the response to u(f) appears as [¢(D)/¥(D)]u,
where ¢ and ¢ are polynomials. If ¢ has simple roots b, (@ = 1, -+, k),
then by eqs. (19)

#(D) Fooba) 1 L p(ba) et — 1
‘/’(D) a=1 ‘l/,(ba) D - ba a=1 ‘V(ba) ba
and hence
D 0 k b,) ebat
27 Mu(t) = &u(t) + 2 #(b) Ea-—u(t)-

¥(D) ¥(0) a—1¥'(ba) ba
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4. APPRAISAL OF THE HEAVISIDE CALCULUS

The operational methods described in the preceding section provide a
valuable tool for solution of linear differential equations. The method has
two principal drawbacks: it is very awkward to obtain solutions with speci-
fied initial values other than 0; further development of the method leads
to symbolic expressions whose meaning has to be studied afresh in each
case. Great ingenuity has been employed to remedy these defects but a
satisfactory general theory within the Heaviside framework has not been
found.

On the other hand, it has been discovered that all the goals of the
Heaviside calculus can be achieved without reference to differential opera-
tors or their inverses and, indeed, without any symbolic caleulus. The
means to this end is the Laplace transform (see Chap. 9); the closely related
Fourier transforms can also serve the purpose. By means of these the
questions about initial conditions are easily disposed of, and justification
of formal rules becomes simple.

The transformations referred to do not merely serve as a substitute for
the Heaviside calculus. Deeper study shows that they lie at the very basis
of that calculus and must inevitably enter in a full justification of the
operational rules.

5. OPERATIONAL CALCULUS BASED ON INTEGRAL TRANSFORMS

One considers equations of form

b
(28) F(y) = f SOKQ, y) dt.

Such an equation assigns a function F(y) to each function f(f), whenever
the integral has meaning. One calls I the ¢ntegral transform of f with re-
spect to the particular transformation (28) and writes:

(29) ' F = T[f].

The relation between f and F is much like that between independent and
dependent variables; here the variables are functions.
Because of the form of eq. (28), the transformation T is linear:

30) Tleify + cofel = a1 Tlf1] + c2T(fe].

The transformation (28) is said to have a (single-valued) ¢nverse if, for
each F of a certain class, there is precisely one f such that T[f] = F. One
writes:

31) J=T7F
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and calls f the tnverse transform of F. Because T is linear, T—! must also
be linear. '

Convolution. If to-each pair of functions f;, fo one can associate (in a
unique manner) a third function 3 such that

(32) Tifs] = TH]-T(fs],
then one calls f3 the convolution of fy, fo and writes:
(33) J3 =J1*fe.

The convolution must then obey simple laws:
Si*fo=foxfi;fi*(f2+f3) = f1 *fz + f1*f3;
Sixefa = cfi *fo = c(fi *f2); fr * (fa*f3) = (f1 *f2) * fs.

Solution of Differential Equations. Suppose the transformation
T has the property that, for a certain polynomial differential operator ¢(D)
and for f() in a certain class of functions, one has an identity:

(35) Tle(D)f1 = Hy)T[/1 = Hy)F(y),

where H(y) is a function of y associated with the operator ¢. Then to
solve a differential equation

(36) D)z = g(t) -
for z = f(¢) in the class referred to, one forms the transformed equation

| Ti¢(D)a] = Tlgl
or equivalently, by egs. (35),

(34)

37) H)F(y) = Gy).
Accordingly,
G(y) G(y)
8 Py = 20, _ _].
(38) ®) ) 1 [ ")

One can try to find the inverse transform of G(y)/H(y) with the aid of
tables of functions and their transforms. One can also seek

1
(39) 71 [m] = w(t)T
Then eq. (38) gives
(40) Tif@] = Tlw®]-Tlg@®)] = TTw *gl,
so that

(41) &) = w@) * g(@).
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The crucial question is choice of the transformation 7' so that eqs. (35)
hold. Tor differential equations with constant coefficients it is sufficient
to choose 7' so that o

(42) T[Df(®)] = HyF(y).
For then
(43) T(aoDn +---+ap1D + an)f = (QOI{n 4+t aH + an)F(y)-

Fourier Integral. Now associated with the operator D are certain
functions f such that Df is a constant times f; these are precisely the func-
tions ke®!. It is known that an “arbitrary’ function f is expressible as a
“sum” of functions of this form. For example, under appropriate condi-
tions,

(44) KﬁimeWMW;

this is the representation of f as a Fourier integral. One finds that

45 F)—iIZtWW
(45) (w = o _w()@ )

so that F(w) can be considered as T[f], a linear integral transform of T';
except for a'constar.lt'multiplier, this is the Fourier transform of f. The
fact that De™! = 1¢*** is reflected in the formula -

[+ ]

(46) Df = /() = f P (@) do,

which follows from eq. (44). Hence
47 T[Df] = t{wF(w).

Thus the transformation T defined by eq. (45) has the property desired.

The functions f representable as Fourier integrals must be small for
large positive or negative ¢ (see Sect..9). Tor functions not satisfying such
a condition other representations can be used. If f is defined only for
t = 0 and does not grow too rapidly as ¢ — <, one can use the Laplace
transform. If fis defined for all ¢ and has period 2, then f can be repre-
sented by a Fourier series; associated with this series is the finite Fourier
transform.

If (D) does not. have constant coefficients, the transformation 7' must
be related specially to the particular operator ¢. Associated with ¢ are the
“characteristic functions” f for which ¢D(f) is a constant times f. Repre-
sentation of an arbitrary function as a series or integral of such character-
istic functions leads to a corresponding integral transformation.
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6. FOURIER SERIES. FINITE FOURIER TRANSFORM

Let f(¢) be defined for all real . One says that f(f) has period T # 0 if
J@+ T) = f@) for all &. A function f(f) given only for ¢ <t < b can
always be defined outside this interval so as to have period ' =b — a -

(periodic extension of f(t)).
Let f(¢) have period T and let w = 2x/T. The Fourier series of f(t) is
defined as the series:

a 0
(48) 50 + Z (a, cos nwt + b, sin nwt),
n=1
where
2 7 2 T
(49) ay, = — f S(@®) cos nwt dt, b, = — f F(@) sin neot dt.
T 0 T 0

Because of the periodicity of f(¢), the interval of integration in eqs. (47)
can be replaced by any other interval of length 7', e.g., from —147 to 14T

x

A

Fig. 1. Piecewise continuous function of period 7'.

It is assumed that the integrals in eqs. (49) have meaning. For this it is
sufficient that f(f) be piecewise continuous, i.e., continuous except for jump
discontinuities (Fig. 1).

Convergence. The Fourier series of f(¢) converges to f(¢) under very
general conditions: for example, wherever f(f) is continuous and has a
derivative to the left and to the right. At a jump discontinuity ¢, the
series converges to

Ffto+) + flto—)],
where

(50) fltot+) = tli§n+f(t), flto—) = lim f(),

t—tg—
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provided [f(tg + h) — f(to+)]/h and [f(to—) — f(ts — h)]/h have limits as
I — 04. TFor example, if f(t) = t for —1 < ¢t < 1 and f(¢) has period 2,

then the corresponding Fourier series converges to 0 at t =1, { = —1,
t=3,t= —3,---. Itis common practice to redefine f(¢) as L5[f(txc+) +

f(to—)] at each jump discontinuity.

If f(¢) is merely continuous, there is no general theorem on convergence.
However, one has a “convergence in the mean,” that is, if s,(f) denotes
the sum of the first n terms of the series (48), then the “mean square error”

1 T )
= f [(0) — sa (0T dt

tends to 0 as n — . This result holds considerably more generally,
e.g., if f is merely piecewise continuous.

If f(t) has a continuous derivative over an interval {, < ¢ < ¢;, then the
Fourier series of f(t) converges uniformly to f(t) over this interval; i.e.,

(51) max |f(t) — s, ()| =0 asn— oo,

oSttt

In general, if a series of form (48), i.e., a “trigonometric series,” converges
uniformly to f(¢) for 0 £ ¢ = T, then the series must be the Fourier series

of f(¢).
A function is determined uniquely by its “Fourier coefficients” aq, ay,
ee, by, -+ - that is, if f(t) and g(¢) have the same Fourier coefficients, then

f@) = g(t) except perhaps at points of discontinuity.
Fourier Cosine and Sine Series. If f(t) is even [f(t) = f(—{)], then
all b, are 0 and f(t) is represented by a Fourier cosine series; that is,
ao ® T2
(52) f@) = E + D a, cos nwt, a, = T f(t) cos nuwt dt,
n=1 0

provided the convergence conditions are satisfied. If f(t) is given merely
between 0 and 14T, eqs. (52) are still valid; for f(f) can be extended to all ¢
to be even and have period 7. Similar remarks apply to representation of
an odd function [f(¢) = —f(—1t)] by a Fourier sine series:

Ti2

(53) @) = né by, sin net, b, = % fo f() cos nwt dt.

The identities:

. . . 1 . .
(5 cosa=He H e, sna= (" — o),
1]
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lead to a rewriting of the formulas (49) in complex form. Under conditions
for convergence,

© 1 T .
55) () = 3 ce™,  cn = Ef femmotdl,  no=0, 1, -
4]

Na=-—00
.

.Finite Fourier Transform. One can interpret the doubly infinite
sequence of numbers

T
f f(t)e—intﬂ dt, n=0,+1, £2, .-,
0
as a function of n, ¢(n), defined only when = is an integer. The equation

T
(56) o(n) = f et de
0

can then be regarded as a special casé of the linear integral transformation
(28); the variable y is replaced by n and is restricted to integer values.
The notations:

(57) ' o(n) = 2[f(N] or ¢ =2[f]

will be used to denote the functional transformation ®, the finite Fourier
transformation, which assigns the function ¢(n) to the function f(f). & is
then defined at least for all f(f) which are piecewise continuous for 0 < ¢
=T

As in Sect. 5, ® is linear:

(68) e, fy + cafel = ar®f1] + co®[f].

Inverse Transform. If ®[f] = ¢, then one writes: f = &~ ![¢]. The
inverse transformation is then uniquely defined by the theorem stated
above concerning functions having the same Fourier coefficients. It is a
less simple matter to describe those functions ¢(n) for which ! exists.
One class of such functions ¢(n) consists of those for which the series
=T 1p(n)e™ ! converges uniformly for 0 < t T. The sum of the series
is then a function f(f) which serves as fb‘l[qs],

1 2 .
(59) d1[g] = T > d(nye™,

n=—o

Convolution. Given f;(t), fo(t) having period T, their convolution is
defined as:

T
(60) fat) = f St — §) ds;
0
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one writes: f3(f) = f1(¢) * fo(t). One can then prove the characteristic
property:

(h1) ofy * fo] = ®[f1] - Plfel.

Transformation of Derivatives. If f(f) has a continuous derivative
for 0 £t = T, then an integration by parts proves that

(62) (' (O] = S(T) — f(0) + inw[f()].

This rule can be made the basis for application of the finite Fourier trans-
form to boundary value problems. Interest will be concentrated here on
the periodic case: f(T') = f(0), for which the rule becomes

(63) P[f'(1)] = inw[f()].

Similarly, if f is periodic and has continuous derivatives through the kth
order,

(64) [fB )] = (tnw) e[f()];

this relation remains true if f*~V(¢) is continuous and % is continuous
except at a finite number of points at which left and right hand kth deriva-~
tives exist. From eq. (64) it follows that, for every polynomial operator
v(D) = aoD™ +- - -+ an_1D + a, with constant coefficients

(65) WD)} = Ylins)alfO).

Steady-State Solutions of Differential Equations. Let f(t) be piece-
wise continuous and have period T. Let aq, - -, a, be constants and let

¥(D) = aoD™ 4+ -4 an—1D + an. It can then be shown that in general
the differential equation

(66) ¥(D)z = f(H)

has a solution x = X (¢) having period T'; X(f) has continuous derivatives

through the (n — 1)st order and an nth derivative which is continuous .
where F(t) is continuous. If ¢(p) has no root of the form #nw for some =,

there is precisely one such periodic solution; it will be assumed in the fol-
lowing that ¥ (inw) 5% 0 for every n. Applying the finite Fourier trans-

formation to eq. (66), one finds by eq. (65)

_ )
Y(ine)

(67) ®[X] » where ¢(n) = ®[f].
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This equation gives the Fourier coefficients of X (?), from which one can
write

1 2 n) .
(68) X==X ﬂlemw.

Y AP—— \0(”“-'-’)

One can attempt to reduce this to a simpler form by developing a table of

finite Fourier transforms and inverse transforms. One can also apply the
convolution formula to eq. (67):

T

(69) X=9H=fﬂmu—@®
0

where g = ®7Y[1/¢(inw)]. To find g, decompose 1/¢(inw) into partial frac-
tions and apply linearity. The problem is reduced to finding inverses of
(inw —a)™® (k =1,2, ---). One finds:

1

1| - ] = kqe®,
| inw — a

1
(70) o1 Fr——)—z} = kot + Th2e"T],

| (tnw — a
[ 1 1 9™

(p—l _________] - 26 at ,
| (inw — a)™ 1! m! da™ (kac™)

where k, = (1 — ¢*T)™'. In particular, if ¢(p) has simple roots p;, - -
Pm, SO that

1 m
71 _—
™ ¥(p) ]é P — ;D;

one finds that

(72) X() = 20 A;H(t, pj)

Jj=1

Hy(t, p) = e?'[Qs(t, p) + kpe®TQu(T, p)],

where

t
" Qs(t, p) = f J()e™ds,  0=t=T.
0

The operators @y and H; can be tabulated for various functions f(¢) of
interest, so that the corresponding periodic solutions can be found easily.
For tables and illustrations of applications see Ref. 11.
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7. FOURIER INTEGRAL. FOURIER TRANSFORMS

Fourier Integral. By allowing the period 7' to become infinite, one is
led to the following integral analogue of the Fourier series expansion:

<]

b0 =f [a(w) cos wt + b(w) sin wi] dw,
0
(74)
o) = f £(t) cos wl dt, bw) = — f 1(0) sin ot dt.

The “coefficients” a(w), b(w) exist if f(¢) is, for example, piecewise continu-
0

ous, and f | f®)|dt exists. The representation of f({) as a Fourier inte-
—0C

gral is then valid under the same conditions as for Fourier series, e.g.,
wherever f’(t) exists. Also, under the conditions described in Sect. 8, the
integral equals Y4[f(ty4-) + f(to—)] at each jump discontinuity of f. One
can write eqs. (74) in complex form:

@5 ) = f AW do, AW = o f e di;

the ﬁrbst integral must, however, be treated as a principal value, i.e., as

limf co-as b — oo,
—b
Under conditions analogous to those for Fourier series one is led to repre-

sentation of a function f(f) in the interval 0 < ¢ < » by a Fourier cosine

[*e]
integral f a(w) cos wl dw. It is customary to define the Fourier cosine
0

transform of f(t) as

5 ®
(76) Fe(w) = J—f f(t) cos wt dt

™

so that the Fourier cosine integral representation of f reads

5 ©
(77) ) = \/;f F.(w) cos vt dw;

thus f is also the Fourier cosine transform of F,. Similar formulas hold
for the Fourier sine transform:

o 5
Fw) = |- in wt dt, ) = [- Fy(w) sin wt dw.
(78) Fu(o) \/Trfo £ sin ) \/Wfo () sin
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Similarly one defines the (exponential) Fourier transform of f as

(79) Flo) = \/, f f(De—t dt,
so that by eqgs. (75)

80 D= —— [ fweea
(80) 10 = = f_ Set do.

Properties of the Fourier Transform. For simplicity, the numerical
factor is dropped and the Fourier transform is defined as

(81) &) = f et di;

then ®,[f] is a linear operator. If f has a continuous derivative f'(¢) and
f(®), f'(t) satisfy the conditions stated above, then
(82) P [f'] = t0dy[f].

A convolution is defined as follows:

(83) 729 = 9 -5 ds = )

and one has the characteristic property:
(84) Peo[f * g] = Pl f1Pclg];

it is assumed here that f, ¢ satisfy the conditions given above. An inverse
operator is defined by the condition: &, ![F] = f, if ®,[f] = F. The func-
tion f can be shown to be uniquely defined by its transform F.

The applications of the Fourier transform to differential equations paral-
lel those for the finite Fourier transform, as described in Sect. 8 above; eq.
(65) is replaced by '

(85) DY (D) ()] = ¢ (iw)Pu[f].

Application of the transform to the equation ¢(D)x = f(¢) yields a solution
in the form of a Fourier integral:
¥ Fo)

86 X(t) = — “‘"d F(w) = @,[f],
(86) (® W) "(w) [f]

or as a convolution:

1
_ % — —1 .
(87) X(@) =fxg, g =P Lp_(m)]
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If f(t) = 0 for ¢ < 0, the same solution is obtainable by Laplace transforms;

see Sect. 10 and Chap. 9 below.
References to tables of FFourier transforms are given at the end of this

chapter (Refs. 1, 5, 6).
8. LAPLACE TRANSFORMS
The Laplace transform of f(¢), ¢ = 0, is defined as

(88) F(s) = Lf] = f (et dt.

It is convenient to allow s to be complex: s = ¢ -+ 70. Equation (88) then
reads:

(89) F(o + iw) = L|f] = f fheoteit dt;
0

hence for each fixed o the Laplace transform of f is the same as the Fourler
transform of f({)e°*, where f is considered to be 0 for ¢ < 0:

(90) LIf] = @, [f(H)e™".

Accordingly, the Laplace transform is well defined if o is chosen so that

o1) f 1) e dt

exists, and for such o one can invert:

1 ® .
fhe ™ = —f F(o + iw)e™! dw,
2r J_»
(92)
1 @
f(t) = L7YF(s)] = —z—f F(s)e* dw, t>0;
TV o
in the last integral s = ¢ + iw, ¢ has any value such that (91) exists,
and the integral itself is a principal value. The integral can be interpreted

as an integral in the complex s-plane along the line ¢ = const., » going
from —wo to 4+ (Fig. 2). Since ds = ¢dw on the path,

1 t
©3) g0 =5 [Feetas

C being the line ¢ = const. The conditions for equality of left and right
sides of (93) are the same as for Fourier integrals. At t = 0, f(f) will
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in general have a jump, because of the convention that f(¢) be 0 for ¢ < 0,
and accordingly the right hand side gives 14f(0+).

The validity of eqs. (88) and (92) depends on choosing ¢ so that (91)
exists. It can be shown that for each f(¢) there is a value ¢y, —0 = g9 =

®
s-plane

Fi1c. 2. Path of integration for inverse of Laplace transform.

4o, called the abscissa of absolute convergence, such that the integral (91)
exists for ¢ > ag. If o9 = —oo, all values of ¢ are allowable; if g9 = +oo,
no values are allowed.

Further properties of the Laplace transform and its applications are dis-
cussed in Chap. 9.

9. OTHER TRANSFORMS

The two-sided Laplace transform is defined as

(94) - Lilf] = F(s) = f Se=*t d.

Hence it differs from the (one-sided) Laplace transform only in the lower
limit of integration; thus

(95) Ly[f] = @, [f(®)e™],

with no requirement that f(¢) be 0 for ¢ < 0. The two-sided transform is
thus a generalization of the one-sided transform.
The Laplace-Stieltjes transform of ¢g(¢) is defined as

(96) G(s) = f “ e ag(t).
(1]

The integral on the right is an improper Stieltjes integral; it has meaning
if g(t) is expressible as the difference of two monotone functions and if the
limit as b — o of the integral from 0 to b exists. If ¢’(t) = f(t) exists,
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then G(s) is the Laplace transform of f(¢). If g(¢) is a step function with
jumps at ¢, &, - - -, the integral reduces to a series Zc;e™". TFor further
information one is referred to the book of Widder (Ref. 10).

Other integral transforms have been defined and studied. These have
found their main applications in the boundary value problems associated
with partial differential equations; they could conceivably be applied to
ordinary linear differential equations with variable coefficients, on the basis
of the analysis of Sect. 5.

The Legendre transform is an example which assigns to each f(¢), —1 =
t < 1, the function

1
97) Tl = o(m) = | fOP.(Yd, n=0,1,2 ---,
—1

where P, (t) is the nth Legendre polynomial. The transformation has the
property

T[R{f}]
d L d
R{f} 5 [(1 — %) af(t)] .

Hence the transform can be applied to differential equations of form
(99) (aoR™ + a1R™ !+ 4 iR + an)z = f(), —-1=2t=1,

where ao, ---, a, are constants. For details on the Legendre transform
see Ref. 12.

The Mellin transform, Bessel transforms, Hilbert transform, and others
are defined and their properties are listed in the volumes of the Bateman
project (Ref. 1).

(98)
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1. FUNDAMENTAL PROPERTIES

Of the various operational methods described in Chap. 8 those based on
the Laplace transform have proved to be the most fruitful.
 Basic Definitions and Properties. Let f({) be a function of the real
variable ¢, defined for ¢t = 0. The Laplace transform of f(¢) is a function
F(s) of the complex variable s = ¢ + tw:

(1) Lif] = F(s) = fo (e dt.

9-01
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It is convenient to allow f(¢) itself to have complex values: f(t) = f;(¢) +
#f2(t), though for most applications f will be real.

It will be assumed that f() is piecewise continuous (Chap. 8), although
the theory can be extended to more general cases. It can be shown that
there is a number oy, —% =< 09 < +, such that

@) fo ()| e~ at

exists for ¢ > g and does not exist for ¢ < a¢. If g9 = —o, the integral
exists for all ¢; if ¢y = 4+, it exists for no ¢; o¢ is called the abscissa of
absolute convergence of L[f]. If ¢ > oo, then the Laplace transform of f
does exist. Accordingly, there is a certain half-plane in the complex s-plane
for which L[f] = F(s) is defined (Fig. 1). Furthermore, F(s) ¢s an analytic
SJunction of s in this half-plane (Chap. 7, Sect. 2). :

Remark. For existence of F(s), it is sufficient that the integral in (1)

Aw

_

Fia. 1. Domain of definition of F(s) = L[f].

have meaning. It can be shown that there is a number oy, the abscissa of
(conditional) convergence, for which this integral exists, and ¢; £ ¢y. For
most applications o3 = oo and for most operations on F(s) it is simpler to
restrict ¢ to be greater than oy. ‘

ExamprLEes oF LapLack TransForMS. These are given in Table 1. For
extensive tables one is referred to Refs. 1, 5, 6, Chap. 8.

Existence. For practical purposes the condition that the Laplace
transform exist for some ¢ is that the function f(¢) should not grow too
rapidly ast — +. For example, 6‘2, e"t, do not have Laplace transforms.’
In general, a function of exponential type, i.e., a function for which |f(¢)|
< €* for some k and for ¢ sufficiently large, has a Laplace transform
F(s).
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Linearity. The Laplace transform is a linear operator. More precisely,
if L[f1(5)] = F1(s) exists for ¢ > o1 and L[f3(t)] = Fa(s) exists for ¢ > o,
then for every pair of constants ¢y, ca Lleifi + cofe] exists for o >
max (o1, o2) and

3) Licifi + cafal = ciLlf1] 4 coLifol].
2. TRANSFORMS OF DERIVATIVES AND INTEGRALS
Rules.

4 LIf'®] = sLlf(®)] — f(0), |
() LIf"®)] = s*LIf®)] — £'(0) — sf(0),
) LIF™@] = s"LIf1 = [f*70) + f*72(0) +- - -4 s"7(0)),

@ L [ fo 10 dt] = %Lm.

The first rule is basic here, the others being consequences of it; it is valid
if (for some o) f(¢) and f'(¢) have Laplace transforms and f(¢), f'(f) are
continuous for ¢ = 0. More generally, eq. (4) is valid if only f(¢) is con-
tinuous and f’(¢) is continuous except for jump discontinuities. Similarly,
eq. (6) is valid if the Laplace transforms exist and all derivatives concerned
are continuous except perhaps the nth, which is allowed to have jump dis-
discontinuities. Rule (7) is valid if f is piecewise continuous and the trans-
forms exist. .

ExampLe. If f =sin¢, f/ = cost, f(0) = 0, so that L{cos {] = sLsin ]
=s/(s2 + 1).

Of great importance is the special case of eq. (6):

8) LIf™ @1 = s"Llf], i f0) = f'(0) =---=f""V(0) = 0.

Hence, if one restricts to functions with 0 initial values, differentiation with
respect to t corresponds to multiplication by s.
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10
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12

13

()
1

eat
" (n> 1)

et (n > —1)

cos at
sin at
cosh at
sinh at

t"cos at (n > —1)
{*sinat (n > —1)
cos? ¢
sin? ¢

sin at sin b¢

TABLE 1.

1/s

1/(s — a)
T(n+1)

T(n+1)
=)

LarLacE TRANSFORMS

or,ifn =10,1,2, --

s/(s* + a?)
a/(s* + a¥)
s/(s* — a¥)
a/(s* — a?)

T+ 1) (s + a)*! + (s — at)**!

or,ifn =0,1,2, -

F) = Lif] = | et dt

n!
) st

n!
" (s — )t

~
“

(82 + a2) n+1

Tn+ 1) (s + ai)"t — (s — ar)* ™!

1

2

1
2

(
(

% (82 + aZ)n+1
1 s
s & + 4)
1 s
k)
2abs

[s? + (a + b)*[s* + (a — b)7]

Range of &
>0
o > Re(a)

>0

o > Re(a)

o> |Imal
g > [Ima|
o > {Rea|
o > |Rea|

o> |Ima|
o> [Imal
a>0

>0

o > Max (e, B)
a= [Im(a+b)|
= |Im (a — b)|

v0-6
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15

16

17

18

19

20

21

e gin (bt + ¢)

<2n+4+2

a —g |t — @n + 1)b]
for 2nb =t = (2n 4+ 2)b,
n=01--b>0,
a real (triangular wave)

a(t —ab)fornb <t < (n+ 1)b
(sawtooth wave)

(s—a)sinc+ beosc
(s —a)?+ b2

__
s(1+4¢e79)

e — e—bs
P

6—08

s
1—¢

a(l + bs — e%)
(1 — e»)

o > Max (o, )
a = Re (a 4 bt)
B = Re(a — bi)

>0

allo
>0
a>0

all ¢

>0

>0

SWHO4SNVYL 3DV1dV1
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3. TRANSLATION. TRANSFORM OF UNIT FUNCTION, STEP FUNCTIONS,
IMPULSE FUNCTION (DELTA FUNCTION)

Translation. In Laplace transform theory it is convenient to consider
each function f(¢) to be defined as 0 for ¢ < 0. Hence forc = 0 f(t — ¢) is
0 for ¢ < ¢ and coincides with a translated f(¢) for ¢ > ¢ (Fig. 2). One finds

o LIt — ¢)] = f wf(t'— e dt
= e L[J].
f(t) ft—=c)
c t

Fic. 2. Translated function.

Unit Function. Now let u(f) = 0for¢ < 0, u(?) = 1 for¢ > 0; u(t) is
called the unit function (of Heaviside). By entry 1 of Table 1,

1
(10) ] =~

Hence forc = 0

—C8

(1) Liu(t - o) = *

’

where u({ — c) is the translated unit function with jump at ¢ = ¢ (Fig. 3);
cf. entry 17 of Table 1. A square pulse of height % (Fig. 4) can be repre-

x X

u(t—=c)

¢ t a b t

Fic. 3. Translated unit function. Fic. 4. Square pulse.
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sented as a combination of two unit functions:

(12) JO = hlut —a) —ut—=0b)], 0=a<b;
hence its transform is
h
(13) L[f] = ;(e“” — e7),
X
ai az as f

F1a. 5. Step function.
A general step function (Fig. 5) can be regarded as a superposition of such
square pulses:
(14)  f = hfu@®) — ul — a))] + hofu(t — a1) — u(t — a2)] +---;
hence (if the pulses do not grow too rapidly, so that L[f] exists)

1
(15) Lif] = —;[hl(l — e 4% - ho(e™H® — e ™) -],

Impulse Function. The unit impulse function at ¢ = 0 is defined as
the limit as ¢ — 0 of a square pulse form ¢ = 0 to ¢t = € and having unit
area, i.e., the limit as ¢ — 0+ of

1
(16) :[u(t) — u(t — o).

The limit does not exist in the ordinary sense; it can be considered as de-
fining an ‘“ideal” function, the delta function §(t). One can consider &(¢)
to be 0 except near ¢ = 0 where 8(¢) is large and positive and has an integral
equal to 1. Now

L [u(t) —u({t — e)] _ 1—e*

— lase — 0,
€ €S
and accordingly one defines:

(17) L{s@®)] = 1.
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The unit tmpulse function at t = ¢ is defined as 8({ — ¢) and one finds
(18) L[5(t —.¢c)] = ™.

It should be noted that L{u(t)] = L[6(£)]/s, so that by eq. (7) u(f) can
be thought of as an integral of 6(¢): u(f) = f t&(t) dt. This in turn suggests
interpretation of §(¢) as u’(t). ’

4. CONVOLUTION

Let f(t) and g(f) be piecewise continuous for { = 0. Then the (Laplace)
convolution of f and g is defined as

t
(19) fxg = f F)g(t — u) du = k(D).
()

It can be verified that h(?) is continuous for ¢ = 0, also that
t

(20) B = f gf(t — ) du = g * .
. ’ 0

=]

If now, for some o, f If()) e~ dt and f lg(¢)|e™"t dt exist, then
0 0

[+
f | h(t) |e~°" dt exists, so that L[f], Llg], L{h] exist and
0 ' ,

(21) Lip] = L{f * g] = L{f]1LIg].
Properties of the Convolution. These are:
(22) Fr(g+h) =f*g+7*h;
(23) f*(cg) = (¢f) *g = e(f*g), c = const.;
(24) f*(g*h) = (f*g) *h.
Special Convolutions. The following are useful:
(25) e * ¢ = fe;
tn—leat
(26) ekt kgt = (n factors);
(n — 1!

In!
27 {meat x nest — mm: tm-f—n-i-leat;

(m+n+ 1!

eat ebt

(28) %tk el = (a # b).

a —
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5. INVERSION

If L[f] = F(s), one writes f = L™'[F], thereby defining the inverse Laplace
transform. The inverse is uniquely determined; more precisely, if L[f] =
L[g] and f, g are piecewise continuous, then f = g, except perhaps at points
of discontinuity.

If f = L7YF), then as for Fourier series and integrals (Chap. 8, Sects.
8) 9)7

® b
(29) f() = if F(s)e** dw = lim if F(s)e* dw, s =0+ 1w,
2 J_o b 27 J
at every ¢ for which f has left- and right-handed derivatives; in the inte-
grals ¢ is chosen greater than the abscissa of absolute convergence of L[f].
Under the conditions described in Chap. 8, Sect. 8, the integral represents
Vlf(to+) + f(to—)] at each jump discontinuity f,. In general f(¢) is de-
fined to be 0 for ¢ < 0, which will force a discontinuity at ¢ = 0 unless
f(t) — 0 ast — 0+; the integral thus gives 14f(0+) at t = 0.
Conditions for Existence. Given F(s) as a function of the complex
variable s, one can ask whether L™!{F] exists, i.e., whether F is the Laplace
transform of some f({). For this to hold, F(s) must be analytic in some
half-plane o > o, but this alone is not sufficient. If F(s) is analytic at
s = o and has a zero there (Chap. 7, Sect. 5), so that

] ay
(30) F(s) = Zs_”, |s|> R,
n=1
then F(s) is a Laplace transform:
o] tn
@1 L7'F$)] = f(t) = 2 tnga i
n=0 .

f@®) is of exponential type and is an entire function of ¢ (Chap. 7, Sect. 4).
Furthermore,

1 t
(32) - =5 f R (s) ds,

where C is a circle: |s| = Ry > R. If in addition, F(s) is analytic for all
finite s except at sy, - - -, S,, then f(¢) equals the sum of the residues of
F(s)e® at sy, - -+, sp (Chap. 7, Sect. 5).

More general conditions that F(s) be a transform can be given. If, for
example, F(s) is analytic for ¢ > o9 = 0 and is representable in the form

¢ us)

(33) F(s) = p + gex (6>0),
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where |u(s)| is bounded for ¢ = ¢; > oo, then F(s) is the Laplace trans-
form of f(t), where f(t) is given by egs. (29), with ¢ = o;.

If F(s) is a proper rational function of s: F(s) = P(s)/Q(s), then eq. (32)
is applicable and the integral can be computed by residues. If in particular
Q(s) has only simple roots s;, - - -, s,, then by Chap. 7, Sect. 5, ¢’P/Q has
residue exp (spt)P(sx)/Q’ (s) at sg, so that

-le)-] n esktp(sk).
Qi) = Q'(sw)

This corresponds to the Heaviside expansion formula (Chap. 8, Sect. 1).
Particular inverse transforms can be read off Table 1 (Sect. 1) or the
accompanying Table 2. Others can be deduced from these by linearity
and the various rules such as (4)—(7), (9), and with the aid of convolutions.
Extensive lists are given in Refs. 1, 5, 6 of Chap. 8.
Rules for Finding Laplace Transforms and Their Inverses. If
f(®) has period T, then

1 T
(35) L[f] = 1—:]_—6—_?7;] e—uf(t) dt.
0

(34) L1 [

For general f(¢) with transform F(s),
1 s

(36) Lif(at)] = - F (—>, a > 0;
a \a

@37) Lle™f] = F(s + a);
(38) Ligf] = (=D"F™(s), n=1,2 -;

(39) L[t™™f] ___fw,,,f F(s) ds - -+ ds (n=1,2 --).

7 times
6. APPLICATION TO DIFFERENTIAL EQUATIONS
Characteristic Function. Let ay, - - -, a, be constants, with ag = 0.

The function V(s) = aps® +---+ a, will be termed the characteristic
function associated with the differential equation

(40) aO"n_x""""‘i‘ an—l%’i"anw:f(t)-
dt" dt
Transfer Function. The function
1
V) a0 +-- -+ an

will be termed the transfer function.

(41) Y(s) =
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Solutions. Let f(t) be piecewise continuous for ¢ = 0 and have an
absolutely convergent Laplace transform for ¢ > 9. A solution z(f) of
eq. (40) satisfying given initial conditions

(42) z(0) = aq, 2'0) = ay, *-, x(n_l)(O) = Qp

is obtained as follows. One forms the Laplace transform of both sides of
eq. (40), applies the rule (6), and obtains the transformed equation

(43) V(9)X(s) — Q(s) = F(s),
where X = L[z], F = L[f] and
(44) Q(s) = aroaos™ ™
+ (a0t + 1a0)s™ % 4+ - -+ (@otn_y ++ - + an_1a0).

Accordingly,

(45) x) = 2L TO _ ygam + YR
V(s) V(s) !

46) 2(t) = LY ($)Q() + Y(©OF(s)] = LY ()Q()] + LY (5)F(s)].

Since Y (s)Q(s) is a proper rational function, its inverse can be found by
residues as in Chap. 9, Sect. 5. The inverse of Y (s)F(s) can be found in a
variety of ways. In particular, Y(s) has an inverse transform y(t) and

t
(47) LY ($)F(s)] = y(® *f(&) =f Yyt — w) du.
0

Thus both terms in eqs. (46) are well defined and it can be shown that
2(t) is the solution sought; x(f) has continuous derivatives through the
(n — 1)st order and an nth derivative which is continuous except where
f() is discontinuous.

The formula (47) defines y * f if f(t) is piecewise continuous for ¢ = 0,
even though f({) may grow very rapidly as t — 4. If V(s) has only
simple roots si, - - -, sy, so that

(48) Y(s) = 2 —— y(t) = 2 Az,
j=18 — 8§ j=1
then
n t
(49) LYF] = 3 Ajebt f Fw)e=t du,
j=1 0

If ¥V has multiple roots, each multiple root s; gives rise to terms of form
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TABLE 2.
F(s)
_°
as+ b
ps+4q
(s+a)s+8)
ps+ ¢
(s + @)?
pstq |
as? 4+ bs + ¢

b —4ac >0

ps + ¢

P37 e
asz-i-bs-l-cb 4ac < 0

ps*+gs+r
(s+ a)s+B)(s+7)
a, B, v distinct

i S

Crastm 7P

pst+gs+r
(s + @)®

GENERAL MATHEMATICS

INVERSE LAPLACE TRANSFORMS

L=HF(s)] = £¢)

C g(=blart
a
(g — peJe™' — (g — pB)e*"

B—a

e~p + (g — ap)i]

a3

- ;f[(q — paJe=at — (g — pB)e—1],

b b — .
UL RPN Rl RN/ yr

2a

et [2 cos 2t 4
a 2a

uw = \dac — b?

5 APt — o+ 1)t
+ B(pB* — B8 + r)e™*
+ C(py* — qv + e,

2ag — pb

A=f—-7,B=v—-a,C=a—§

B — a)?
pe~* + (¢ — 2pa)te

2
+ (pa® — qo + 1) %e‘“‘

B -
pa — 2afp + g8 — r] -
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TaBLE 2. INVERSE LarLACE TrANsrorms (Continued)

F(s) L™NF(s)] = f(2)
pst+qs+r Mo, 1., Bs 4 C
(s+a)(a32+bs+c)' e +NL [asz+bs+c]’
ac? —ba+c#0 M = pa* — qa +1r, N = ac® — ba + ¢,

B = (ag — bp)a + pc — ar,
C = (ar — pc)a + qc — br

psd 4 ¢s? 4 rs + u 71 [ PoS + Qo ] -1 [ PSS+ ¢ ]
(as® + bs + c)(As* + Bs + C) as®+bs+¢ As*+ Bs+C
as® + bs 4 ¢ and To find po, qo, P1, ¢1, compute:

As? 4+ Bs + C having no

Ao = alar — cp) + b(bp — ag),
common roots

o = alau — cq) + bep,

oo = a(bu — cr) + ¢*p, B = aB — bA
v = aC — ¢4, 6o = ay® — BBy + 67,
A = A(4r — Cp) + B(Bp — Aqg),

m = A(4u — Cq) + BCp,

o1 = A(Bu — Cr) + C?%p,

61 = Ay? — BBy + CB.

Then
Aoy — —
po = AY BB poy = 0o
8o : o
Ay 4w —py+oB
p1 = T = .
01 01

ps + ¢

1 (as® + bs + ¢)?

b2 — 4ac <0 56(1:2;; [pB% sin Bt 4+ (¢ — ap)(sin Bt — Bt cos Bt)]

_i B_\/ﬁlac—b”
a_2a’ B 2a
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A(s — 8;))7%in Y(s). The corresponding term in y(t) is At*~'e%*/(k — 1)!
and in L™YYF] is

¢
50 et f w)(t — w)*le™ du.
(50) o e =
Particular Solutions. If all the initial constants ag, - - -, ay_; are 0,

then Q(s) = 0 and # = L™![YF] is the solution sought. This particular
solution can be found by eqs. (47), which requires knowledge of y(¢) and
hence of the roots of V(s). This can cause difficulty. An alternatlve is to
employ egs. (29):

1 o0
(51) z(t) = ;f Y(s)F(s)e® dow, o = const. > ay.
TJ_»

It may be possible to simplify this by residues or series expansions.

If f(t) is of form eb*p(f), where p(t) is a polynomial of degree m in ¢, a
particular solution can be found explicitly without finding the roots of V (s).
If V(b) # 0, the particular solution is

52) () = ¢ [Y(b)p(t)+—(—)p()
o <m><> )
4+ — o1 P 4+ ”(t)].

If V(b) =0, then V(s) = (s — b)*W(s), W(b) = 0. Let Z(s) = 1/W(s)
and let p;(f) be the polynomial obtained by integrating

(m)
(53) ZOPO + 2O O +- -+ 2 () ()

k times from 0 to ¢. Then x = ¢%p,(t) is a particular solution of eq. (40).
In both cases it can be verified that

Llz] = Y(s)Lle*p] + Y (s)R(s),

where R is a polynomial of degree less than that of V' (in fact less than that
of W(s) in the second case).

Simultaneous Equations. Similar methods are employed for simul-
taneous linear differential equations with constant coefficients in unknowns

21, %, ---. One applies the Laplace transformation to the equations,
thereby obtaining equations for X,(s), Xs(s), ««-; in forming these new
equations, certain initial conditions for x1, z, - - - are assumed. The equa-

tions are simultaneous algebraic equations for X;(s), Xa(s), - -+ and can
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be solved by elimination or determinants. When Xj(s) is known, z;(f) can
be found by forming the inverse transforms.

ExAMPLE.

s +2d+ 13¢2¢ dx -I—d2 +3 +5 15¢%;
— —_ Yy = e PR p— =

dt? v ’ dt Y e

whent =0,z =1,y =0, dz/dt =0, dy/dt = 1. Hence

$2X(s) + (2s + 1)Y(s) = s+ —3—2

15
(s =2)X(s) + (5*+3s+ 5)¥(s) = 2 + —

2
st 4- % 4 8s% + 5s -+ 54
T G- DEFAE D)
s+ 1552 — 17s + 26
T -6+ DE+AE D
X = 2 _ 19 n 21 " 43s — 51 '
s—2 20+1) 542  106*+1)
Y = 1 _ 19 n 28 n 29s 4 7 ’
s—2 2(s+1) 5(s42) 102+ 1)
19 21 43 cost — Hlsint
x=2e2‘—Ee_‘+—5—e_2t+ " '
19 28 29 cost+ 7sin ¢
y= et 0

7. RESPONSE TO IMPULSE FUNCTIONS

TFor many applications it is important to consider the response of a linear
system to the impulse function 6(f) or to other ideal functions such as
5(0), 8"(1), - -

ExampLe 1. Consider the equation

dx
E + 2 = 5(t), z(0) = ayp.

If one applies the Laplace transform mechanically to both sides and em-
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ploys the rule: L[5(f)] = 1 (Sect. 3), one finds:

1+a0

X(@s) = P ) 2@t = (1 4 ag)e™.

Hence x(¢) has a discontinuity at ¢ = 0 (Fig. 6);  jumps from the assigned
‘initial value ag to the value 1 4 ap.
ExampLE 2. Similarly,

is found to have the solution (Fig. 7) 2z = 1 + ag + a1 — (1 + a;)e™, with

x

xA ‘ Slope
1+ (27} L 1+ 1
Q- Slope oy

/|

F1a. 6. Response of first order system F1c. 7. Response of second order sys- -
to é-function. tem to é-function.

ap = 2(0), @y = 2’'(0). Here there is no discontinuity of x(f) at { = 0, but
2'(t) has a discontinuity, jumping from the assigned initial slope of «; to
the slope 1 + «;.
It should be noted that the second example can be written as follows:
& Wty =50
a v a YT

thus its solution is an <nfegral of the solution of the first example. Each
such integration reduces the type of discontinuity. In general,

VD)z =8(®), . VD) =aD"+---, a#0,

has a solution which has a jump in the (n — 1)st derivative at ¢ = 0, but
no jumps in the derivatives of lower order. For the equation

C V(D)x = 6 — ¢, c>0,

a similar conclusion holds, with the discontinuity occurring at ¢ = c.
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. d .
One can interpret 6(t — c) as 7 u(t — c¢), if one forms the transforms by

the rule L[f’] = sL[f], ignoring the discontinuity whlch would make the
rule inapplicable. For then

L [E ut — c)] = sL{u(t — ¢)] = ¢,
di

in accordance with eq. (18). This suggests the general procedure.
General Procédure. For the differential equation

af
V(D)x = %

in which f has a jump discontinuity at { = ¢ but has otherwise continuous
derivatives, one should take transforms ignoring the discontinuity:

V(s)Liz] = sLIf] — f(0).

Under similar conditions on f, a similar procedure can be used for higher
derivatives, and for the general equation

V(D)x = W(D).

If the order of V(D) is less than that of W(D), z will itself be an ideal
function; otherwise « will merely show some discontinuity at ¢ = ¢. Similar
remarks apply when there are several jump discontinuities.

Let f have continuous derivatives of all orders except for ¢ = ¢, at which
the derivatives have limiting values to the left and to the right. Then f
can be written as f (£) + kju(t — ¢), where fi(¢) is continuous at ¢ = ¢; cor-
respondingly, f’ (t) = "1 (&) + k18(t — ¢), where f1(®) is discontinuous at
t = ¢ Thus

/(@) = folt) + kault — ¢) + k16(t — ¢)
F'@®) = f'a(t) + kad(t — ) + £10'(¢ — ¢)

= f3(8) + ksu(t — ¢) + k28t — ) + k18'(t — ¢),

Computation of L[f’], L[f"’], - - -, as described above, is then equivalent to
that obtained by writing

Lif'l = Llfe] + keL{u(t — ¢)] + k1 L[6(t — )]
Lif") = Llfs] + ksL{u(t — o)] + k2L[3(t — ¢)] 4 k1 L[5'(¢ — ©)]

sy
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if one agrees that
(54) L™ (¢ —¢)] = s  (m=12 ---).

The justification for the rules adopted lies in the fact that they give a
reasonable limiting form for the response 2(¢), and they meet the needs of
the physical situations to which they are applied.

8. EQUATIONS CONTAINING INTEGRALS

The method of Sect. 6 is applicable to “1ntegr0-d1fferent1al equations”
such as the following:

T

55 dz dt =
(55) a05+a1x+a2fx = 10).

0

One need only apply the Laplace transformation to both sides and employ
rule (7):

X
(56) : ap(sX — ag) + ;X + ap P F(s),

from which one can solve as before for X(s).
One can also differentiate eq. (55) to obtain an equation of second order:
d*x

(57) Qo th

dz _
+a1;i'z+azx—f(),

from eq. (55), agz’(0) 4+ a12(0) = f(0), so that one initial condition for eq.
(57) is fixed. If f(¢) has discontinuities, f'(f) has to be treated as an ideal
function (Sect. 7); in such a case, it is simpler to use eq. (56).

It should be remarked that eq. (55) is equivalent to the system

dx dy
ao'd—t+111x+¢12y=f(t), E=$;

with the initial conditions: £(0) = ag, (0) = 0. By similar devices inte-
grals can be eliminated formally in most cases.
9. WEIGHTING FUNCTION

It has been seen that, for proper initial conditions, various problems lead
to relations of form

(58) X(s) = Y(s)F(s),

where F(s) is the Laplace transform of a driving function or “input” f(t)
and X(s) is the Laplace transform of the “output” x(f). In such cases
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Y (s) is termed the transfer function; i.e., in general, the transfer function
is the ratio of the Laplace transforms of output and input.
If y(t) is the inverse Laplace transform of Y (s), then as in Sect. 6

. t
(59) 2(t) = y() * () = fo 7t — u)y(w) du.

Accordingly, z(t) is a weighted average of f(¢) over the interval from 0 to ¢,
the value at ¢ — u receiving weight y(u). Since f(f) = 0 for ¢ < 0, one can
also write

¢
60) 2(t) = f £t — wy(w) du,

so that the average is over the entire “past” of f(f).
Graphical Computation. One can then compute z(¢f) at each ¢
graphically as suggested in Fig. 8. Here y(u) is graphed against u«, with

X
y(u) y

| T

u

/ ﬁ

¢/

u t t

t

Fig. 8. Response as a weighted average.

the positive u-axis to the left and the origin above the point ¢ on the t-axis.
The value of f at t — « is multiplied by the value of ¥ above { — u and the
result is integrated to yield x(¢) at the ¢ chosen. As the graph of y(u) is
moved parallel to the t-axis, the average at successive times ¢ can be found.

Weighting Function. The function y() = L™ [Y(s)] is termed the
“weighting function.” In view of the discussion given, this term would be

justified only if f g dt = 1. But
(1]

61) ORY IFORSE A (OB OX
0 0

provided Y (s) is defined for s = 0. Hence if Y(0) = 1, the “total weight”
is 1, as desired. If Y(0) ¢ «, one can redefine the input as a constant
times z(f) and achieve the same result.
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Response to Unit Impulse. If ¢is very small and f(¢) is a'square pulse
of height 1/¢ from ¢ = 0'to ¢t = ¢, then eqs. (59) show that approx1mately

x(t) = —y(t) e =y(®);

as e — 0, this can be shown to be the limiting relation. .Thus the weighting
Sfunction is the response to the unit impulse function §(f). This also follows
from eq. (58), since if f(t) = &(1), L{f] = F(s) = ,
One can also remark that, if f(¢) is the unit function «(t), then L[f] =

F(s) = 1/s, so that by eq. (58)

Y(s ) ' dx

X(s) = — Y(s) = sX(9), y@® = —;

s dt
for, by egs. (59), x(0) = 0. Thus the weighting function can be interpreted
as the derivative of the response to the unit function. If one denotes by A(t)
the response to the unit function, so that L[A] = Y (s)/s, then for an arbi-
trary driving function f(z),

d
62) X(s) =s <ﬁ F(s)> -— f 7t — w)A(w) du.
0

Equations (59) and (62) are equivalent to the eqgs. (25), (26) of Chap. 8,
Sect. 5.

10. DIFFERENCE-DIFFERENTIAL EQUATIONS

Because of the transformation rule: L[f(¢ — ¢)] = ¢7*L[f] (Sect. 3),
Laplace transforms can be applied to solve linear difference-differential
equations, i.e., equations of form

n

M
(63) 2 2 amf P — mT) = g(t);

k=0 m=0

it will be assumed that the coefficients a,: are constants and that a solu-
tion f(¢) is to be found which is equal to O for ¢ < 0 and satisfies eq. (63) for
t > 0. Under these conditions

(64) L®( — mT)) = $LIf(t — mT)] = sk L[f]

and the transformed equation corresponding to eq. (63) is

n M
(65) (Z > amks’”e"””> F(s) = G(s).

k=0m=0
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This can be solved for F(s) and the solution sought is L™[F(s)]. Validity
of this process requires in particular that for some og the term in paren-
theses in eq. (65) have no zeros in the complex s-plane for ¢ > oy. For
discussion of the questions involved here see Ref. 1.

Instead of requiring that f(t) be = 0 for ¢{ < 0 one can impose the condi-
tion that f(¢) coincide with a given function fo(f) in an “initial interval”
—MT <t =0. This case can be reduced to the previous one by first ex-
tending the definition of fo(f) to the range t > 0, while preserving con-
tinuity, and introducing a new unknown function f;(¢) = f(t) — fo(?).

11. ASYMPTOTIC BEHAVIOR OF TRANSFORMS

In general the behavior of f(¢) at ¢ = 0 is related to that of F(s) = L[f]
as s — o along the real axis, while the behavior of f(f) at t = 4 is re-
lated to that of F'(s) as s — 0 (or s — a¢) along the real axis. A full dis-
cussion is given in the book of Doetsch (Ref. 3, Chap. 8), pp. 186-277.

If

a G(S)

(66) F(s) = — +
] s
where |G(s)| < M for ¢ > a0, then.
(67) _ lilgi f(©) = lim sF(s) (s real).
t— 88— o
If f(t) and f’(¢) have convergent Laplace transforms for ¢ > 0 and f(¢)
has a limit as ¢ — -0, then

(68) tlim S = lin('; sF(s) (sreal).
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1. DEFINITION OF CONFORMAL MAPPING. GENERAL PROPERTIES

Definitions. Let u = f(z, y), v = g(z, y) be two real functions of the
real variables z, y, both defined in an open region D of the zy-plane. As
(x, y) varies in D (Fig. 1), the corresponding point (u, v) varies in a set
D and one says that the equations

ey U = f((l), ), v = g(x; Y)

define a transformation or mapping T of D onto D; (Chap. 1, Sect. 3). If
for each (u, v) in D, there is precisely one (x, y) in D such that u = f(z, y),
v = g(x, y), then the transformation 7' is said to be one-to-one, and T has
an inverse T, defined by equations

2) z = ¢(u, v), y = ¥(u,v),

obtained by solving egs. (1) for x and y in terms of » and v.
Now let T, defined by egs. (1), be a mapping of D onto D;. In addition,
let f(z, y¥) and g(z, y) have continuous first partial derivatives in D. The
1001
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mapping 7 is said to be conformal if, for each pair of curves Cy, C; meeting
at a point (zg, yo) of D, the corresponding curves C, Cs meeting at (ug, vo)
form an angle « at (uo, vy) equal to that formed by C.*, Co* at (2, yo). It
is assumed that Cy, Cy are directed curves and have well-defined tangent
vectors at (g, yo) so that Cy*, Co* also have tangent vectors at (ug, vo). The
angle « is then measured between the tangent vectors. It is customarily
a signed angle and measured, e.g., from C; to Cg and, correspondingly, from

y v
D
Cs : eha c D,
a
Ci
(x0, ¥o) (0, vo)
N — x \\/ u
(@) (b)

Fie. 1. Conformal mapping: (a) z-plane, (b) w-plane.

C1* to Cy*. Conformality then means that the corresponding angles are
equal and have the same sense, as in Fig. 1. To emphasize this, one can
write more explicitly that T is to be conformal and sense-preserving. For
most applications T is assumed to be one-to-one. Conformality of 7' then
implies conformality of 772. '

TueoreM 1. Let (1) define a mapping T of D onto Dy. Let f(z, y) and
g(z, y) have continuous first partial derivatives in D. Then T 1is conformal
and sense-preserving if and only if the Cauchy-Riemann equations

du v au av
@) —=— —=-—
dx 9y Y ox

hold in D and the Jacobian o(u, v)/d(x, y) = 0 in D.
By virtue of this theorem, the theory of conformal mapping is related

to the theory of analytic functions of a complex variable (Chap. 7). One
can use complex notation:

4) 2=z 4 1y, w=u -+ 1w, 1=V -1,

and the transformation 7T is then simply a complex function w = F(2) (ie-
fined in D. The mapping w = F(2) is conformal precisely when F is analytic
i D and F'(z) # 0in D. (See Ref. 2.)
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ReMark. If F'(z) is 0 at a point 2q, then 2y is termed a critical point of
F(z). A function w = F(2) cannot define a conformal mapping of any open
region D containing a critical point zo. The behavior of F(z) near a critical
point is typified by the behavior of 2” near z = 0, forn = 2, 3, - - - ; except
for w = 0, each w has n inverse values w!/*. Curves meeting at angle « at
z = 0 are transformed onto curves meeting at angle na at w = 0. The
absence of critical points does not guarantee that F'(z) describes a one-to-
one mapping; all that can be said is that, if [(z9) # 0, thenw = F(z) does
define a one-to-one conformal mapping of some sufficiently small region
containing zo.

Geometrical Meaning of Conformality. Let w = F(z) define a
one-to-one conformal mapping of D on D;. Then each geometrical figure

y v

Fia. 2. Bebavior of mapping in the interior and on the boundary.

in D will correspond to one in D; which is similar in a certain sense; if the
first figure is bounded by smooth ares, the second will be bounded by similar
arcs and corresponding pairs of arcs form the same angle (Fig. 2). The
lines = const., ¥ = const. in D form two families of curves meeting at
right angles; hence these correspond to curves in Dy formed of one family
and of its family of orthogonal trajectories (Fig. 3). Similarly the curves
‘u = const. form orthogonal trajectories of the curves v = const. On the
boundary of D conformality may break down. In general there is some
sort of continuous correspondence between boundary points of D and those
of D.- If D and D are each bounded by several simple closed curves, and
F is one-to-one, then the mapping F and its inverse can indeed be extended
continuously to the boundaries. Commonly there are points at which con-
formality is violated in that two boundary arcs of D meeting at angle «
correspond to boundary arcs of D; meeting at angle 8 # «; in particular
this can mean a folding together of the boundary, as suggested in Fig. 2.
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As in Chap. 7, Sect. 5, one can adjoin the number « to the complex
plane to form the extended plane. The mapping w = F(z) is said to be
conformal in a region containing z = « if F(1/z) is conformal in a region
containing z = 0. Similarly, one can discuss conformality in a neighbor-
hood of a point 2y at which F(zp) = o, so that F(z) has a pole, in terms of
the conformality of 1/F(2) near zg.

y v

/T\
/TN
\

(a) ®

F1c. 3. Level curves of ¢ and y: (a) z-plane, (b) w-plane.

Conformal Equivalence. Two regions D, D are said to be conformally
equivalent if there is a one-to-one conformal mapping w = F(2) of D on D,
(so that the inverse function maps D, conformally on D). Conformally
equivalent regions must have the same connectivity; i.e., if D is simply
connected, then so is D;; if D is doubly connected, so is D;. However,
having the same connectivity does not guarantee conformal equivalence.
If D is simply connected then D is conformally equivalent to one and only
one of the following three: (a) the interior of a circle; (b) the finite plane;
(c) the extended plane. In particular, one has the following theorem.

TueoREM 2 (RiEMANN MappiNG THEOREM). Let D be a simply con-
nected region of the finite z-plane, not the whole finite plane. Let zo be a point
of D, and let a be a given real number. Then there exists a one-to-one conformal
mapping w = F(z) of D onto the circle |w| < 1 such that F(zy) = 0 and
arg F'(z0) = a. Furthermore, F(z) vs uniquely determined.

From this theorem it follows that the one-to-one conformal transforma-
tions of D onto |w| < 1 depend on three real parameters: zo = Re (o),
9o = Im (2p) and «. These parameters can be chosen in other ways. For
example, three boundary points of D can be made to correspond to 3 points
on |w]= 1 (in the same “cyclic order”).
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2. LINEAR FRACTIONAL TRANSFORMATIONS

Each fuhction
a b

¢ . d

5) 'w=az+b:
cz+d

|0,

where q, b, ¢, d are complex constants, defines a linear fractional transfor-
mation. Each such transformation is a one-to-one conformal mapping of
the extended z-plane onto the extended w-plane. Special cases of egs. (5)
are the following:

Translations. The general form is

(6) w=2z-+b.

Fach point 2 is displaced through the vector b.
Rotation Stretchings. The general form is

) w = az = Ae™z.

The value of w is obtained by rotating z about the origin through angle «
and then increasing or decreasing the
distance from the origin in the ratio
A to 1.

Linear Integral Transformations.

Complex plane

(8) w=az+b.

Each transformation (8) is equivalent
to a rotation stretching followed by a
translation.

Reciprocal Transformation.

1
© w =
z
Fig. 4. The transformation w = 1/z.
Here |w|= 1/|z| and argw = — arg 2.

Hence w is obtained from z by “inversion” in the circle |z| = 1 followed
by reflection in the z-axis (Fig. 4).

Important Conformal Mappings. The general linear fractional trans-
formation (5) can be composed of a succession of transformations of the
special types:

a bc—ad 1

(10) w= -4 I F=— Z = cz + d.
¢ c Z
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If one includes straight lines as “circles through «,”” then each transforma-

tion (5) maps each circle onto a circle. By considering special regions
bounded by circles and lines one obtains a variety of important conformal

mappings, as illustrated in Table 1. The first three entries in the table

depend on 3 real parameters and provide all conformal mappings of D on

D, in each case.. .

.. TaBLe 1. IMPORTANT CONFORMAL MAPPINGS

F(z) D D,

ia z_ZO, .
e T lz]< 1 lwl< 1
areal, |z0] < 1
az+b
cz-i—‘d' Im(z) >0 Im (w) >0
a, b, ¢, d real, ad — bc > 0
e z__—_f_(_,, Im(z) >0 lw]< 1
zZ2— 2
a real, Im (z) > 0
! region between circles L < Re (w) <AL
p eg eel C % e %
|z — a| = a, :
|z — b =b,
0<a<b

To find a one-to-one conformal transformation of a circular region D on
a circular region Dj, one can choose three points 2;, 23, 23 on the bounding
circumference of D and three points w;, we, wz on the bounding circum-
ference of D, in the same eyclic order as 2y, 23, z3. The equation
w — W wWy; — We 2 — 22 21 — 29

(11) -+ = -+
w — W3 wp; — W3 g — 23 21 — R3

then defines a linear fractional transformation w = F(z), mapping D on
D, and moreover F(z;) = w; forj = 1,2, 3. The left-hand side of eq. (11)
is an expression formed from four complex numbers w, w;, we, w3, termed
the cross-ratio of the four numbers in the order given, and denoted by
[w, wy, we, ws]. Equation (11) states that [w, wy, ws, ws] = [2, 21, 2o, 23],
or that the cross-ratio is invariant for a linear fractional transformation.

3. MAPPING BY ELEMENTARY FUNCTIONS

Except for the linear fractional transformations, the elementary analytic
functions define one-to-one conformal transformations only in suitably re-
stricted regions.
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The Function w = s>, This maps both z and —z on the same w, and
hence it is one-to-one only if restricted to a region D which contains no
pair z, —z. Tor example, D can be chosen as the upper half-plane Im (2)
> 0. The corresponding region D; consists of the w-plane minus the ray:
u = 0,v = 0. The points (x, 0) on the boundary of D correspond to the
points (%, 0) on the boundary of D, both (z, 0) and (—=z, 0) corresponding
to (u, 0), with u = x%. It should be noted that F’(z) = 2zis 0 at z = 0,
so that this point is critical; conformality fails here, and in fact the edges
of D, .forming a 180° angle at z = 0, are transformed onto overlapping
edges of D; which form a 360° angle.

For w = 2 one can also choose D as a sector a < argz < 8, provided
B — a < 7; the region D, is the sector: 2« < argw < 28. A third choice
of D is a hyperbolic region: zy > 1, x > 0; D, is then a half-plane, v > 14.
A fourth choice of D is a strip: ¢ < 2 < b, where a > 0; Dy is then a region
bounded by two parabolas: 4a%u + v? = 4a*, 4b%u + v = 4b*.

The Function w = 5". Analogous choices of regions can be made
forw=2"(n=23,4,---). The sector D: o < argz < 8, with 8 — «
< 2x/n, corresponds to the sector Dy: na < argw < nB. If n is allowed
to be fractional or irrational, w = 2" becomes a multiple-valued analytic
function (Chap. 7, Sects. 6 and 7) and one must select analytic branches.
For such a branch the mapping of sectors is similar to that when 7 is an
integer.

The General Polynomial w = a¢s" 4+ -+ an_15 + a,. Suitable
regions can be obtained by means of the level curves of « = Re (w) and
v = Im (w). In particular the level
curves of u and » which pass through
the critical points of F(z) divide the
z-plane into open regions each of which
is mapped in one-to-one fashion on a
region of the w-plane. This is illus-
trated in Fig. 5 for w = 2® — 3z + 3.
The critical points are at 2 = £1, at x
which » = 0. The level curve v =0 11 v \
divides the z-plane into six regions, in
each of which w = F(z) describes a
one-to-one conformal mapping of the
region onto a half-plane. Adjacent
regions, such as I and IV, can be g, & Mapping by w = 2 — 32 + 3.
merged along their common boundary .
to yield a region mapped by w = F(2) on the w-plane minus a single line.

The Exponential Function w = e°. This maps each infinite strip
a < y < b conformally onto a sector a < argw < b, provided b — a < 2m;
in particular each rectangle: ¢ < ¢ < d, @ < y < b in the strip corresponds

y
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to the part of the sector lying between the circles Jw| = e° and |w|= ¢,
Similarly, the inverse of the exponential function, w = log z, maps a sector
on an infinite strip. When b — a = 7/2, the sector is a quadrant; when
b — a = =, the sector is a half-plane.

The Trigonometric Function w = sins. This maps the infinite
strip —r/2 < & < 7/2 on the finite w-plane minus the portion |Re (w)|
= 1 of the real axis. '

The Rational Function w = 5 + (1/3) = (32 + 1)/s. This maps the
exterior of the circle |z| = 1 on the w-plane minus a slit from —2 to +2.
The same function maps the upper half-plane Im (2) > 0 on the w-plane
minus the portion |Re (w)| 2 2 of the real axis.

Let the real constants hy, -+, hpyy, 1, -+, @, satisfy the conditions

h1<h2<"'<hm, hm>hm+1>"'>hn—|-l,
T < 2p <--- < Xy,

(12)

for some m,1 £m =n-+ 1. Then

ki e — T

(13) f(z) = hylog (z — 1) — huq1log (z — z,) + 2 hy log ———

k=2 g — Xp—1
maps the half-plane Im (z) > 0 one-to-one conformally on a region D, con-
sisting of a strip between two lines » = const. minus several rays of form
v = const. If the strip D; has width < 2, the function F(z) = exp [f(z)]
maps the upper half-plane conformally and one-to-one on a sector minus
certain rays and segments on which arg w = const. (See Chap. 7, Ref. 7,
pp. 605-606.)

4. SCHWARZ-CHRISTOFFEL MAPPINGS
These are defined by the equation

z dz.

(14) w=7f) =A + B
R RS L
where A, B are complex constants, xo, X1, *««, Zn, k1, * * *, by are real con-

stants, and —1 < k; £ 1. The function f(2) is analytic for Im (z) > 0,
with (z — z;)* interpreted as the principal value: exp [k;log (z — x;)].
Every one-to-one conformal mapping of the half-plane D onto the interior
of a polygon can be represented in the form (14); this applies more generally
to every one-to-one conformal mapping of the half-plane onto a simply
connected region whose boundary consists of a finite number of lines, line
segments, and rays.

Polygon. When the function maps D onto a polygon, the points x4,
-+, z, (and possibly ») on the z-axis correspond to vertices of the polygon,
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and the corresponding exterior angles are kyw, ---, k,w. If there is an
(n + 1)st vertex, corresponding to z = «, then necessarily k; +---+ k,
# 2;in general, 1 <ky 4+---+ k, < 3.

Convex Polygon. When the function (14) maps D onto a convex poly-
gon, all exterior angles are between 0 and = and the sum of the exterior
angles is 27; accordingly,

(15) 0<ki<1l and ky+---+k, <2

When ky 4«4 k, < 2, there is an (n + 1)st vertex corresponding to
z = ». In general, for every choice of the numbers k;, - - -, k, such that
(15) holds, eq. (14) describes a one-to-one conformal mapping of the
half-plane Im (z) > 0 onto the interior of a convex polygon.

Rectangle. For the special case

16 _ 2 dz
(16) v ‘fo Vi-Aa -

0<k<1,

the mapping is onto a rectangle with vertices &K, =K + ¢K’, where

dz 1/k dz

1
W K-f ey ® ), s

In this case F(z) is an elliptic integral of the first kind (Chap. 7, Sect. 8),
and its inverse is the elliptic function z = sn w.

A great variety of conformal mappings have been studied and classified.
See Ref. 1 for an extensive survey.

5. APPLICATION OF CONFORMAL MAPPING TO BOUNDARY VALUE
PROBLEMS

The applications depend primarily on the following formal rule. If
U(z, y) is given in a region D and w = f(z) is a one-to-one conformal map-
ping of D on a region D, then

) U  %U ?U. o°U
(18) =

— _ = | — + R
a9z 9y? u?  a?

Jirere.

In particular, U is harmonic in terms of z and y:
’U  9°U

(19) Py + 6_112

=0,

if and only if U is harmonic when expressed in terms of u and ».
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The boundary value problems considered require determination of U in
D when U is required to satisfy some conditions on the boundary of D
and to satisfy an equation

(20) ULV
o T T T ML, Y),
a2 ay? v

for given h(z, y), in D. It follows from eq. (18) that a conformal mapping
w = f(2) amounts to a change of variable reducing the problem to one of
similar form in the region D;. It is in general simpler to solve the problem
for a special region such as a circle or a half-plane. Hence one tries to find
a conformal mapping of D onto such a special region D;. Once the prob-
lem has been solved for U in Dy, U can be expressed in terms of (z, y) in
D and the problem has been solved for D.

For most cases D has a boundary B consisting of a finite number of
smooth closed curves Cy, ---, C,, the case n = 1 being most common.
‘The most important boundary value problems are then the following.

I. Dirichlet Problem. The values of U on B are given; U is required
to be harmonic in D and to approach these values as limits as z approaches
the boundary.

II. Neumann Problem. Again U is harmonic in D but on B the
values of dU/dn are given, where n is an exterior normal vector on B.

Both problems can be generalized by requiring that U satisfy a Poisson
eq. (20) in D. In general this case can be reduced to the previous one by
introducing a new variable W, where

1 B
@) W=-U+— fD e, w1081 — 02 + = ) dzn

Furthermore, the Neumann problem can be reduced to the Dirichlet prob-
lem by consideration of the harmonic function V(z, y) conjugate to U
(Chap. 7, Sect. 2). '

To solve the Dirichlet problem for a simply connected region D, one -
seeks a one-to-one conformal mapping of D on the circular region |w| < 1.
This veduces the problem to a Dirichlet problem for the circular region.
If p(u, v) are the new boundary values, its solution is given by
1—1?

d
1+ 72— 2rcos(p —0) i

1 27
(22) U=— f p(cos ¢, sin ¢)
27 0 .

where r, 6 are polar coordinates in the uv-plane.
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If D is multiply connected, it is also possible to map D conformally on
a standard type of domain, for which solution of the Dirichlet problem is
known. For details, see Ref. 2.

REFERENCES

1. H. Kober, Dictionary of Conformal Representations, Dover, New York, 1952,
2. Z. Nehari, Conformal Mapping, McGraw-Hill, New York, 1952.
See also the list at the end of Chap. 7.
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1. TABLE OF NOTATIONS

Table 1 lists notations in current use. There are some inconsistencies
between different systems, and care is needed to ensure proper understand-
ing. The list is not exhaustive and there are other notations even for the
crucial relations; for example, “a and b’ is sometimes denoted by “‘ab.”
The grouping under mathematics, engineering, and logic is somewhat arbi-
trary.

2. DEFINITIONS OF BOOLEAN ALGEBRA

First Definition. A study of the rules governing the operations on
sets (Chap. 1) leads to a type of algebraic system, in which the basic opera-
tions are U and N, frequently called “or” and “and,” corresponding to
union and intersection of sets. In addition, the system can be partially
ordered (the relation of set inclusion) and each object of the system has a
complement.

11-01
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TaBrLE 1. TABLE oF SYMBOLS, BOOLEAN ALGEBRA

Operation Name Symbols
Engi-
Mathematics Mathematics neer-
(Set Theory)  Engineering ,Logic (Set Theory) ing Logic
Union “or” t“or” U - \Y%
Intersection “and” “and” n . A
Symmetric Exclusive “or” @ or + None A
difference “or”
Complement  Complement  Negation "or C - ~
Order Order Material = = D
implication .
Sheffer . Sheffer Sheffer | | |
stroke stroke stroke
Tixistential Existential Existential Jor Y vV Jor 3
quantifier quantifier quantifier f ¢ P P
Universal Universal Universal N A ¥ or []
quantifier quantifier quantifier ¢ P P

A Boolean algebra B is a set of elements x, y, 2, - - - with two binary opera-
tions U and N, an order relation =<, and operation ' of forming the comple-
ment such that:

1) zUz=ugx, z Na=nuz,
@ 2Uy=yUz, zxNy=yNaz
@ 2NNz =Ny Nz zrU@Uz2 =@w@Uy Ug

4 zN@EUa=6NyUEN2,
cU@wNa=@Uy N @Us2),

5) =z =w,

6) xz=yandy £ zimply z = 2,

(7) z=<yandy = zimplyz =y,

(8) B contains two elements 0 and 1 such that 0 <« < 1 for all z in B,

9 O0Nz=0, 1Nz =z,

(10) 00Uz =z, 1U.x=1,
(11) =z Na' =0, z Uz =1,
(12) @Ny) =2 Uy, @ Uy =2 Ny,

(13) @) ==
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The properties (1) to (13) can be regarded as a set of postulates, from
which all other properties are to be deduced. Some of the postulates are
consequences of others, so that the list could be considerably reduced (Refs.
1,3, 5).

The definition given here is easily verified to be equivalent to that given
in Chap. 1, Sect. 7, in terms of lattices (Ref. 3).

Second Definition. An alternative definition is based upon the set
operation of symmetric difference, also known as “‘exclusive or.” The sym-
metric difference of two sets X, ¥, denoted by X @ Y, is the set of all ele-
ments in X, or in Y, but not in both. In symbols,

(14) X@Y=({s|ls€cXUVYandsg X NY}

This is pictured in Fig. 1.
From the definition, a number of properties can be verified. For exam-
ple, X ® X = @ (here the empty set plays the role of the 0 of a Boolean

X®Y
,,,,,
X Y
F1g. 1. Symmetric difference. Fig. 2. Three-term symmetric difference.

algebra), (X @ Y)PZ = X @ (Y P Z). The proof of the second rule is
suggested in Fig. 2.

In an arbitrary Boolean algebra one can define 2 @y in terms of the
other operations
(15) z@y=(@Ny)U @ Ny).

From (1), ---, (13) and (15) a number of rules can then be deduced by
algebraic means alone.

It is possible to consider @ and M as the basic operations and express U,
', and = in terms of these two:

(16) Uy =@y &Ny,
17 o =1@x,
(18) z=yifaNy=n=

Pursuing this point of view further, one is led to a second definition of a
Boolean algebra.
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Alternative Definition. A Boolean algebra B is a set of elements z, y,
2, «++ with two binary operations @, [ satisfying the laws:

(19) 2@y =yDx, zNy=yNg,

(20) CROYD2z=2dYD2), Ny Nz=zN@N2),
@) 2N @) =Ny d kN2,

(22 zNaz=uz,

(23) B contains two elements 0 and 1 such that for allzin B,z ® 0 = «,
2@r=0andz N1 =z

If the rules (19) to (23) are regarded as postulates and the relations
(16), (17), (18) as definitions of U, ’, and =, then one can prove all the
laws (1) to (13). Conversely, from (1) to (13) and the definition (15), one
can prove (19) to (23). Hence the two definitions of a Boolean algebra are
equivalent. ,

Relation to Set Theory. Although Boolean algebras arise naturally
in set theory, that is not the only source of such systems. They arise in
logic and in other mathematical contexts. It is natural to ask whether
every Boolean algebra can be interpreted as an algebra of all subsets of a
given set. This is not true as stated, but there ¢s a close relationship between
each Boolean algebra and an algebra of sets (Sect. 5).

ExamrLE 1. A very simple but nevertheless useful Boolean algebra is
one in which B contains only 0 and 1. The properties are given in Tables
2 and 3. This Boolean algebra is used in switching circuits: ¢ = 1 means

TaBle 2. 22U y TaBLe 3. Ny
Y )

N N,
0 0 1 0 00
1 11 1 01

that a certain switch is closed and x = 0 means that the switch is open.
Two switches in parallel correspond to z U y; two switches in series corre-
spond to z N .

ExamprLE 2. A somewhat more general Boolean algebra is used in the
design of electronic digital computers. This can be described as follows.
The elements of B are all ordered n-tuples x = (1, @2, -+, Z,), Where
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each z is 0 or 1;if y = (y1, - -, yn), then x U y, 2 N y are defined as
follows: .
ny:(xlU?/l,x2U?/2,"',an?/n),

Ny = (@ Ny, zeNyg oo,z N yn),

where 2 U yg, 21 N y; are evaluated as in Tables 1 and 2. The 0 and 1
of B are defined as follows:

O=(0y0)°"70), 1=(1J1"”;1)'

Electronic devices can be constructed to perform the Boolean operations
on the n-tuples z. The operation of ordinary arithmetic can be defined
in terms of the Boolean operations together with the operation of shifting
the decimal point.,

3. BOOLEAN ALGEBRA AND LOGIC

Algebra of Sentences. Let z, y, --- stand for declaratory sentences.
For example x might stand for “greed is evil” and y for “lead is heavy.”
From two sentences z, y one can form the new sentence “z and y”’; this is
denoted by z N y. In the example given, x N y is the sentence “greed is
evil and lead is heavy.” From z and y one can also form the sentence
“a or y”’; this is understood to mean: z or y, but not both; the new sentence
is denoted by x @ y. One can also form the statement “x and/or y,” mean-
ing: x or y or both; this is denoted by z U y. Finally, one can form the
negation of a sentence x: ‘‘lead is heavy’” when negated becomes “lead is
not heavy.” The negation of x is denoted by «’.

One can now verify that in the normal logical procedures for manipulat-
ing sentences, the operations U, N, @, ’ obey all the rules of a Boolean
algebra. Two sentences are regarded as equal if they are logically equiva-
lent. In this sense, all false sentences can be considered equal and identi-
fied with the § of the Boolean algebra; a universal truth (‘“tantology’”) can
serve as the 1. In logie a table showing the Boolean algebra relationship of
variables is called a truth fable. The order relation x < y can be inter-
preted to mean: “z implies y.”” For example, if x is the sentence ‘¢ is an
even integer”’ and y is the sentence “2f is an even integer,” then z < y,
but y = « is false, so that + < y. The implication defined here is essen-
tially strict implication (see below) (Refs. 4, 5).

Propositional Functions. The sentence “f is an even integer” con-
tains a variable, t. Accordingly, the sentence can be regarded as a function
of t. For each value of ¢, the function becomes a definite sentence or
proposition. Hence the function is termed a propositional function. It
can be denoted by f, with f(¢) denoting the value for each ¢{. For example,
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f(4) is the true sentence ‘“4 is an even integer,” while f(3) is the false sen-
tence “3 is an even integer.”” The t's for which f(¢) is true form a set.

Similarly, the sentence “t is 4 human being” is a propositional function
which in turn determines a set; namely, the set of all human beings. If
f, g, - -+ are propositional functions, then one can form new propositional
functions f U ¢, f N g, f @D g, f’, --- as above. If X;, X, --- are the sets
corresponding to these propositional functions, then the operations on the
functions correspond precisely to the operations U, N, @, ’ on sets. For
example, f N g is true when f and ¢ are true; therefore an object belongs to
X/n¢ when it belongs to X, and to X, that is, to Xy N X,;. Thus the cal-
culus of propositional functions can be interpreted as a Boolean algebra, of
sets. The zero element represents a propositional function which is false
for all values of the variable; the set 1 corresponds to a function which is
true for all values.

Conversely, each set X gives rise to a propositional function: ¢ is an ele-
ment of X. This function is true precisely when ¢ belongs to X. A Boolean
algebra of sets thus leads to a Boolean algebra of propositional funetions.

Because of the parallel between propositional functions and sets, one can
employ geometric set diagrams, as in Figs. 1'and 2, to reason about proposi-
tional functions. In logic they are called “Venn diagrams.”

Quantifiers. The operation of forming the intersection of many sets
has an analogue for sentences or propositional functions. As for sets

(Chap. 1, Sect. 1) ﬂ z; denotes 1 Ny N---N z,. When the z’s are
t=1

sentences, this is the new sentence: ‘‘every one of the 2’s”’ or “for every ¢,

x;.”” The range of ¢t may be over an infinite set. When the range is under-

stood, one writes simply () z;. Similarly, if f(f) is a propositional func-
. t

tion and ¢ ranges over all values for which f(t) has meaning, then n f)is
read: “for every f, f(t).” Alternative notations for [ f(£) are }(t) and
H f@. Oné terms n a quantifier. There is an anaiogous intertpretation ,
of U z; and U f@®; the first is read “for some t, z;” and the second ‘“‘there

exlsts at such that f().” An alternative notation for |J is 3 U is also
called a quantifier. t

Implication. The statement “x implies y” is capable of various inter-
pretations, of which three will be discussed here: material implication, con-
ditional implication, and strict implication, Throughout, =, y, - - - denote
sentences forming a Boolean algebra B.

Material implication. From the sentences x, y one forms the new sen-
tence: “x implies y”’ as the sentence 2’ U y. This is called material impli-
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cation. One often writes x D y or £ = y for this implication:
24) aDy=2Uy=2z=y.

If x and y are propositional functions z(t), y(t), then they can be represented
as sets X, Y. The sentence is then a propositional function which is true
foralltif X’ U Y = I;thatis, if X © Y. The notation x D y is therefore
unfortunate. Material tmplication is the basis for most mathematical argu-
ments, but it is criticized as permitting such statements as ““if Iceland is an
island, then fish can swim” to be judged true.

Conditional implication. TFor each pair of sentences z, ¥ a new sentence
y/x is formed and is read “if x then y” or “y if x.”” It will be assumed that
x ¥ 0. This is called conditional implication. The significance of the new
sentence is indicated by certain postulates:

(25) =/z =1,

(26) y/x = O0impliesy Nz = 0,

27) @ Nz)/z=(y/x) N (z/x),

28) z/(x Ny) = (/2)/(y/x),

29) (l@y/z=1® /),

(30) for every z, y there is a z such that z/x = y, if v = ‘0.

I

Conditional implication is designed to fit the needs of the theory of probability.
When z is false, it may happen that y/z is true or that y/z is neither true
nor false.

One can verify that postulates (25) to (28) are satisfied by material im-
plication, but that (29), (30) are not. However, (29) is a reasondble de-
mand to make on an implication, and it is valuable in theory of proba-
bility. Postulate (30) requires that B contain sufficiently many sentences
so that one can always solve the equation z/x = y for the sentence z. A
Boolean algebra which has an operation x/y satisfying postulates (25) to
(30) is called an implicative Boolean algebra. It can be shown that an im-
plicative Boolean algebra cannot be atomic (Sect. 4) but that one can
always construct an implicative Boolean algebra containing any given
Boolean algebra.

Strict implication is defined as follows. The strict implication x implies
y holds if and only if the material implication is a tautology (i.e., z Dy

= 1) and this is true if and only if /2 ='1. When z and y are interpreted
as-sets then the equation x O y = 1 can be interpreted as stating that z
is contained in y. This relation has the following alternative notations:
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zSyyzx,2Cy,yDx,x Cy y Dz Thelast two notations are un-
fortunate since they almost reverse the interpretation of the implication
symbol.

4. CANONICAL FORM OF BOOLEAN FUNCTIONS

Let a Boolean algebra B be given, with operations U, N, and ’ as in
the first definition of Sect. 1. By a Boolean function or Boolean polynomial
in n variables z;, ---, x, is meant an expression constructed from the n
variable elements 1, - - -, z, by the three operations U, N,’. For example,

Uy N@E Uz

is a Boolean polynomial in three variables. It would appear at first that
such expressions can be made arbitrarily long and hence that, for fixed =,
there are infinitely many polynomials. However, by the rules of the alge-
bra, each polynomial can be simplified, and there are precisely 2*" poly-
nomials for each n. For example, there are four polynomials in one variable
vz, 2, 0=z Na’, 1=z U2

If two Boolean polynomials in x4, ---, &, are given, one may wish to
determine whether they are the same; that is, whether one can be reduced
to the other by applying the algebraic rules. In order to decide this, one
reduces both polynomials to a canonical form, as described below. If both
have the same canonical form, they are the same; otherwise, they are un-
equal polynomials.

Definitions of Canonical Form and Minimal Polynomials. By a
minimal polynomial in x;, ---, x, is meant an intersection of n letters in
which the ¢th letter is either z; or 2’

Exampres. There are four minimal polynomials in z, y:

z Ny, ' Ny, z Ny, zZ Ny,
Similarly, there are eight minimal polynomials in «, y, 2:
zNyNe, zNy Nz 2 NyNe, Ny Nz
zNyNZ, z Ny N2, Ny Nz, Ny N2,

There are 2" such minimal polynomials in z;, - - -, 5.

By a polynomial in canonical form is meant a polynomial which is either
0 or else is a union of distinct minimal polynomials. (The order of the
terms can be specified, but this is of no importance since U is commuta-
tive.) For example,

@Ny) U@ Ny, Ny U@Eny)U @ Ny)



BOOLEAN ALGEBRA 11-09

are in canonical form. Every polynomial can be written in a unique canoni-
cal form, so that equality of two polynomials holds if and only if they have
the same canonical form (Ref. 3).

Reduction to Canonical Form. A given polynomial can be reduced
to canonical form by the following steps:

(i) Moving all primes inside parentheses by (12);

(i) Moving all caps (’s) to the inside of parentheses by the first rule
4);

(iii) Simplification of terms by rules (1), (2), (9), (10), (11), (13), so that
one finally obtains a union of terms, each of which is a minimal polynomial
in some of the 2’s;

(iv) Adjoining missing 2’s to the minimal polynomials by inserting
2 U 2’ = 1 for each such z;

(v) Applying steps (ii) and (iii) again.

ExamPLE.

NE@UU[@Uy N G U2

=[Ny UENAUIEUy N YN

=Ny U@NzaU@NyNZ)UNyNz)

=[Ny NEFUHU[zNHN G UPIU Ny N
Ully N2") N " U =)

=@NyN2YUeNyN2DUENyN2)DU Ny N2
UNyNz2)u @@ NynN2yU@@Nynz)

=@NyN2HY)UENyNA2U Ny N2)U G NyN2

5. STONE REPRESENTATION

Let a Boolean algebra B be given. Then it is possible to find a set S
and to define a one-to-one correspondence between the elements z, y, - - -
of B and the certain subsets X, Y, --- of S in such a fashion that if x
corresponds to X and y to Y, then 2 U y corresponds to X U Y, 2 N y to
X NY,z to X, 0 to the empty subset @, and 1 to S itself. Thus every
Boolean algebra can be represented as (is zsomorphic to) the Boolean alge-
bra of certain subsets of a set S. This is the Stone representation.

If B has only a finite number m of elements, then B can always be repre-
sented as the Boolean algebra of all subsets of a given set S. Furthermore,
m must be of the form 2", where n is the number of elements in S. If By
and Bg are Boolean algebras both having m elements, where m is finite,
then B; and Bj are isomorphic.
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STONE REPRESENTATION THEOREM. An infinite Boolean algebra B can
be represented as the Boolean algebra of all subsets of a set S if and only if B
s atomic, complete, and distributive. These properties are defined as
follows: :

An element a of B is called an atom if the intersection z N a of @ with an
arbitrary element x of B is either a or 0. If, for each x other than 0 in B,
there is an atom a such that z N a = a, then B is said to be atomic. In the
representation of B as a class of sets, the atoms correspond to sets each
containing one point.

A Boolean algebra B is said to be complete if every subset A of B has a
least upper bound (Chap. 1, Sect. 7). The least upper bound is then
unique; it can be denoted by

U@) or Uea,
acC A

and is also called the union of A.
A Boolean algebra B is said to be distributive if, whenever | J(4) exists,

6y snUw = U Bna

for every 8 in B.

6. SHEFFER STROKE OPERATION
In a Boolean algebra B let

(32) =zly=2" Uy

If x and y are sentences, z|y is the sentence “‘either not z or not y.” One
can then prove that

B3) zlz=2'=1@ux,
B4) @lp|ly =z Ny,
35) (@|o)|@ly) ==z Uy,
36) =z|(yly) =2’ Uy,
@37 z|(lx) = 1.

Accordingly, all the operations of the Boolean algebra can be expressed in
terms of the Sheffer stroke operation. This proves to be of value in the design
of electronic digital computing machines, which compute in the scale of
two (see Ref. 6). ‘
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1. FUNDAMENTAL CONCEPTS AND RELATED PROBABILITIES

Postulates. The probability that an event will occur is a real number
between 0 and 1. If x denotes the sentence, the event will occur, then
Pr(z) denotes the probability that the event will occur. Thus Pr(x) is the
probability associated with the sentence x. Consider a Boolean algebra B
of sentences (see Chap. 11) in which 0 is interpreted as the sentence as-
sociated with an impossible event and 1 is interpreted as the sentence
associated with a certain event. This treatment will (¢) show how some
probabilities can be computed from others; (b) study the relations between
probabilities of sentences connected by the words and, or, not, if (denoted
respectively by N, U, ’, /).

12.01
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Assume that the following postulates hold:
(1) Pr(x) is a non-negative real number if x is in B,
(2) If @1, a9, -+, arein B and x; | x; = 0 when ¢ 5= j where ¢, j = 1, 2,

<+« then |J w is in B and
k=1

@ 0
PT(U £L'k> = Z Pr(xk).
k=1 k=1

3) Pr(1) = 1.

(4) Pr(xz N y) = Pr(x) Priy/z).

If z; N x; = 0, i.e., if ;, x; cannot both occur, then x;, x; are said to be
mutually exclusive and the events associated with them are also said to
be mutually exclusive. Thus postulate (2) states that the probability
that at least one of a set mutually exclusive events will occur is the sum
of their probabilities. The following theorems are consequences of the
above postulates.

Taeorem 1. 0 < Pr(z) = 1.

THEOREM 2. Pr(0) = 0.

THEOREM 3. Pr (U xk> = Z Pr(ai) if z; N z; = 0 whenever ¢ 5 j.
k=1 k=1

Tueorem 4. Pr(z U y) = Pr(@) + Pr(y) — Pr(z N v).

TaEOREM 5. Pr(z’) = 1 — Pr(x). ;

Targorem 6. Pr(z N ¢') = Pr(x) — Pr(z N y).

TrEOREM 7. If 21, 29, -+, ®n are mutually exclusive (ie., x; N x; = 0
when 1 % j) and exhaustive (ie., x; Uxe U ---Ux, = 1) and equally
likely (i.e., all Pr(z:) are equal) then Pr(zz) = 1/nfor k=1, 2, -, n.

ExampLE 1. As an illustration of Theorem 7 consider a coin which is
about to be tossed, and let z; be the sentence ‘“the coin will turn up heads”
and z, be the sentence ‘“the coin will turn up tails.” If the coin is not
loaded, one says that it is honest and assumes that the hypotheses of
Theorem 7 hold. Then Pr(z;) = Pr(zs) = 14.

ExampLE 2. Next consider an honest die which is about to be thrown
and let x; be the sentence ‘‘the face numbered & will turn up” where
k=1,2 ---,6. Again one assumes that the hypotheses of Theorem 7
hold and concludes that Pr(z;) = 1§ fork = 1,2, ---, 6. The probability
that the die will turn up an odd number is given by Theorem 3. Thus

Pr(z; U x3 U x5) = P(ky) + Pr(xs) + Pr(zs) = 3 = 4.

ExampLe3. Next let © =2y U2z U s, y = 2; U 25 U 23 and note
that Pr(zx) is the probability that the die will turn up an odd number and
Pr(y) is the probability that it will turn up a number less than 4. It will
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be instructive for the reader to check that
2 =1z Uy Uz, Y =x4 Uas Uxg
zNy=ux Ua,, zUy=z, Uzxo Uaz Uas

and also to check Theorems 4, 5, and 6 for this « and y. To conipute the
conditional probability Pr(y/z), i.e., the probability that the die will turn
a number less than 4 if it turns up an odd number, use postulate (4). Thus

Pr(z Ny) = § = Pr(x)Pr(y/x) = $Pr(y/x),

and hence
Priy/a) = %.

ExampLE 4. Next consider three boxes and let z; denote the sentence
“the kth box will be selected” where &k = 1, 2, 3. If one of the boxes is
selected at random, this is interpreted to mean that the hypotheses of
Theorem 7 hold and hence that

Pr(z;) = Pr(zz) = Pr(zs) = 4.

Suppose further that the first box contains two silver coins, the second
contains one silver coin and one gold coin, the third contains two gold
_ coins, and that a coin is drawn at random from the box which has been
selected. Let y denote the sentence ‘“‘a gold coin will be drawn from the
box which has been selected.” Then

Pr(y/xzy) = 0, Pr(y/xg) = %, Pr(y/x;3) = 1.

Now suppose that this experiment has been performed and that the coin
has been examined and found to be gold. On the basis of this information
what is the probability that the coin came from the third box containing
the two gold coins? One interprets the answer to this question as the
conditional probability Pr(xs/y), i.e., the probability that the third box
was drawn if the coin was observed to be gold. It will be instructive
for the reader to verify that Pr(zxs/y) = 24 with the aid of the following
theorem which is called Bayes’s theorem and which is a consequence of
the above postulates.

TuroreM 8. Bayes’s THEOREM. Ifxq, 2o, - - -, X, are mutually exclusive,
exhaustie and distinct from 0, then for any y one has

Pr(z:/y) = Pr(z)Pr(y/z:)/ kz Pr(xe)Pr(y/x)
: =1

if the denomanalor is not 0.
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Independence. The sentences x4, g, * * +, T, are said to be independent
if
Pr ( N xk) = Pr(zy) - -+ Pr(z,)
k=1
and if a similar equation holds for every subset of x, xs, - -+, Zp.

Thus when n = 3 one has
Prxzy N ag N x3) = Pr(z,)Pr(zg)Pr(xs),

Pr(z; N @) = Pr(z)Pr(zs),

Pr(ze N x3) = Pr(zz)Pr{zs),

Pr(zy N z3) = Pr(zy)Pr(zs).
If x4, zo are independent and Pr(z;) # 0, Pr(zs) £ 0 then -

| Pr(zy N @) = Pr(z))Pr(zs)
= Pr(z)Pr(re/x;)

= Pr(xz)Pr(xl/xz);
and hence

Pr(zy/x1) = Pr(ze) and Pr(zi/z3) = Pr(zy).
2. RANDOM VARIABLES AND DISTRIBUTION FUNCTIONS

Consider a physical experiment which is designed to result in a real
number. This number is subject to certain random fluctuations since in
all physical experiments one expects experimental errors to be present.
The result of the experiment is interpreted as a random variable X. For
a mathematical definition of a random variable, see below. Let x, (for
any real number A) denote the sentence the experiment will produce a num-
ber less than A, i.e., the sentence X is less than A. Then the probability
Pr(z,) is a function F of the real variable X called the distribution function
of X. Thus Pr(zy) = F(\).

If Ay < Aq then

- Pr(zy, N a’y) = Pr(zy) — Przy, N o) = FA2) — F(\y)

is the probability that X is greater than or equal to Aj, but less than X,.
Thus when F is known, one can find the probability that X lies in a given
interval. ’

In Chap. 11 it was noted that the elements of a Boolean algebra can be
interpreted as sets of points of some space. Thus one interprets ), N zy,
as a set and Pr(z,, N 2'y,) as the probability of obtaining a point of this
set, that is, the probability that the experiment will select a point & of
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this set. Imagine that the number which the experiment produces.is
determined by the point £ selected and hence that X is a function of &
Then x, is the set of all points ¢ for which X(¢) < A. The only restrictions
placed on the function X are that it is real valued and that each of the sets
2z shall belong to B. Such a function is said to be measurable with respect
to B. The measure of a set z, is defined as the probability Pr(z)). A
random variable X s a function which is measurable with respect to B.

Let X be a random variable, let Z\ be the set of points £ for which X (§)
< \, and denote Pr(@) by F(A+). Then it can be proved (using postulate
2) that Z» is in B for all real \. Moreover I'(A+) is the limit of F(u) as
w approaches X through values greater than A. If u approaches A through
values less than A then the limit of F(u) is F(\). TFurthermore, F is a
nondecreasing function for which

lim FQ\) = F(—«) =0, lim F(Q\) = F(4) = 1.
Ao — N> 4w
The above properties characterize the distribution function of a random
variable. ,
ExaMmpLE 1. As an illustration of a random variable let z be any element

of B and let
1if £ is in the set =

0 if £ is not in the set z.

¥a(8) = {

Then . is called the characteristic function of the set x and is interpreted
as the random variable which takes on the value 1 when z succeeds and the

F(\)

- —

Pr(x')

1 A

F1c. 1. Distribution function for Example 1.

value 0 when z fails. The distribution function F of the random variable
Y, is the following (see Fig. 1):

0 fA=Z0

F\) = {Pri@)if0<N=1
1 if 1 <A
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ExampLE 2. Consider a die and let z; denote the sentence the face num-
bered k will turn up. Let

X = Vo + W, + 3oy + Wy + 5z + 60

If the face numbered & does turn up then this will assign the value 1 to
¥z, and the value 0 to the remaining characteristic functions and hence X

F(\)

Fia. 2. Distribution function for Example 2, random tossing of a die.

will take on the value k. Thus X is the random variable which takes on
the value which the die turns up (see Fig. 2).

It can be proved that sums, products, and differences of random variables
are again random variables. Furthermore any real number is a random

vartable.
ExampLE 3. The number /2 is the random variable whose distribution

function F is given by (see Fig. 3):

>Y

Z

F1c. 3. Distribution function for Example 3.

- 3. EXPECTED VALUE

If X is a random variable associated with some experiment and if the
experiment is repeated a large number of times, then one should expect the
average of the numbers obtained to be very close to some fixed number
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E(X) which is called the expected value of X. In order to make this idea
more precise the following definition is introduced. The random variables
X1, Xo, - -+, X, are said to be independent provided xy x,, o, ** -+, Tu,
are independent for all Aj, Xg, -+ -, N\, where zy,», is the set of points for
which X;(¢) < M.

As an illustration of independent random varlables consider a pair of
honest dice. Let X, denote the random variable \vhlch takes on the value
resulting from the throw of the first die and X, denote the random variable
corresponding to the second die. It is reasonable to assume that X; and
X, are independent. Thus we assume that the occurrence of a number less
than A; = 3 on the first die and the occurrence of a number less than Ay
= 5 on the second die are independent events; similarly, for other choices
of A\; and \,. Next let X3 = X1 + X,.- Then X, and X; are dependent
random variables. ‘ S

Weak Law of Large Numbers. Now let X be an arbitrary random
variable and let X, X, - - -, X, be independent random variables all having
the same distribution function as X. Let ., be the set of points £ for
which

|(X1(0) + Xa(®) 4+ + Xul®)/n — BX)| <

Then 2., is interpreted as the sentence the average of Xy, X, - - -, X, will
differ from E(X) by less than e. One might expect that

lim Pr(z.,,) = 1 for every e > 0

n — 0

and that there is only one choice of E(X) for which this limiting probability
is 1. This, as a matter of fact, is the case and this result is called the weak
law of large numbers. Roughly the weak law of large numbers states that if
an experiment is repeated a large number of times then it is very likely that the
average of the results will differ only slightly from the expected value. The
expected value E(X) exists for a large class of random variables but not for
all random variables.

Properties of Expected Value.

THEOREM 9. E(\X + uY) = AE(X) + pE(Y) #f N\, p are real numbers
and X, Y are random variables for which E(X), E(Y) exist.

TuareoreMm 10. If E(X), E(Y) exist and X () = Y (§) for all £ then E(X)
< E(Y).

TuroreM 11. If , is the characteristic function of the set x then E(y;) =
Pr(z).

With the aid of Theorems 9 and 11 one can compute expected value for
certain random variables called simple random variables.
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A random variable X is simple if it has the form

X =2 M
k=1

where each Ay is a real number and each v, is the characteristic function of
the set xy. '
THEOREM 12. .

EX)=E (k;l Mll/xk) = k_Zl A Pr(zy).

Theorem 10 is used to approximate expected value for a much larger
class of random variables called bounded random variables. The real num-
bers A, u are called bounds for a random variable X if A < X(¢) =< u for
all &, When the bounds exist X is said to be bounded.

THEOREM 13. If A, p are bounds for X and if A =N <A < +++ <\,
=pu then E(X) exists and

2 M (FOw) — FOu—n)) < E(X) £ 20 M(FO) — F\ir))

n
k=1 k=1

where F s the distribution function of X. If each Ay — M1 < ¢, then the
extreme members of the inequalities differ by at most e.
Theorem 13 is readily established as follows. Let

b = “{/”)\k n x,)\k;l

then
2 =1, 2 X¢p = X,
k=1 k—1
Me—1¢r = X < Mg
and

E(¢r) = Pr(z\, N 2'y,.) = FOx) — FAp—1)

and hence the inequalities follow from Theorems 9 to 11. The difference
between the extreme members of the inequalities is:

i e = M) (T ) — F\ep)) < i e(F(\k) — F(\k—1)) ‘
- . = (F) — FN) = e
If F has a continuous derivative f (i.e., dF(\)/d\ = f(\)) then
F\) — F\e—1) = () \e — N —1)
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where Ay < wr < N\ and

lim i Me(FAg) — Fi—p)) = Hm 25 Nef () ke — N—r)

e— 0 f—1 e — 0 k=1

f “uf (u) du.
A
Thus

TaroreM 14. If the distribution function I' of a random variable X has
a continuous derivative f and N, p are bounds of X then E(X) exists and

E(X) =j;#uf(u) du =j;“u dF(u).

THEOREM 15. If the distribution function F of a random variable X has a
derivative f then E(X) exists and

=]

E(X) =fw uf(w) du =f w dF (u)

—0 —o

whenever the integral exists.

Stieltjes and Lebesgue Integrals. The two cases which arise most
frequently in practice are the simple random variables and the random
variables whose distribution functions have continuous derivatives. In
the first case the expected value is computed by means of Theorem 12
and in the second case by Theorem 15. The integral on the right of the
equation of Theorem 15 can be assigned a meaning even when f does not
exist. In the case of a bounded variable this integral is defined to be the
limit of the approximations given in Theorem 13. A meaning can also
be assigned in certain unbounded cases. This integral is called a Stieltjes
integral. Another integral expression for £(X) is

E(X) = f X dPr.

This is called a Lebesgue integral and it is also defined in terms of the
approximations of Theorem 13.

The terms expectation and mean are often used as synonyms for expected
value.

Probability Density and Joint Distribution. The derivative f of
F is called the probability density. When the density is given the distribu-
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tion function can be computed by the formula

A
FQ\) = f f(u) du.

See Figs. 4 and 5, Sect. 5.

The joint distribution of two random variables X;, X, is a function F
such that F(A;, Az) is the probability that X; < N, and X3 < Ap. If the
joint distribution has a density f then

)\l )\2
F(\, No) ?f f(ug, ug) duy dus.

—w0 ¢ —w

if F{, Fy are the distribution functions of X;, Xo, and f1, f2 are the cor-
responding densities then

A © N
Fi(\) = f f Fur, uz) duy dug = f Fi(ur) duy,

A

A
Fa(hg) = f ff(ul, wg) dug duy = [ faluz) dus,

fl(ul) =f f(’l,l./l, ’Ug) dU,g, fz(’dz) =f f(ul, U2) d’ll/l.

The expected value of the broduct XX, is

B(X:Xs) = f f wruaf(uy, ug) duy dus.

If X;, X, are independent then

F(Ai, Ag) = F(M)F(A2)
and

S, ug) = flur)f(uz).
Furthermore:

TuaroreM 16. If Xy, X, are independent then E(X1X,) = E(X{)E(Xs).
“Two random variables X;, X, for which F(X;X5) = E(X)E(X,) are
said to be uncorrelated. Thus Theorem 16 states that independent random
vartables are uncorrelated. This result holds even when there is no joint
probability density. The converse is not true. That is, random variables
may be uncorrelated, but not independent.
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As an illustration of a pair of random variables which are dependent but
uncorrelated, consider an honest die whose faces are numbered respectively
-3, =2, —1,1,2,3. Let X; denote the random variable which takes on
the value resulting from the throw of this die and let X, = X;2. Then

E(Xl) = 0’ E(X2) = '13_4:
E(X1X5) = E(X,*) = 0 = E(X1)E(X,)
Hence X; and X, are uncorrelated but they are clearly dependent.

4. VARIANCE

Taeorem 17. If f is a function of a real variable X with at most a finite
number of discontinuities and iof X is a random variable with distribution
function F, then f(X) is a random variable and

B(f(X)) = f f(u) dF (w)

whenever the integral exists.
A special case of this formula is the following:
If
EX)=np
and

BX = 0% = [ (u = w? dF) = BOX) = BXX) = o*(X),

then ¢%(X) is called the variance of X and the positive square root of the
variance, ¢(X), is called the standard deviation of X. .

The Properties of Variance.
TreoreM 18. *(X + 1)) = ¢2(X), ¢?(A\X) = A%e%(X).
TrEOREM 19. If X4, X,, « -+, X, are independent random variables, then

(X + Xo 44 X,) = A(X)) + o3 (Xo) 4+ -+ A(XL),
2<X1+X2+"'+ Xn) 1%(X1) 4+ ®(Xo) +- - -+ ¢%(X,)
. -z :

n

n : n
If z. is the set of all points & such that | X(§) — u| < € where u = E(X)
then a’, is the set_of all £ such that |X(§) — u| = ¢ Moreover the in-
equality
Yo (§) £ (X () —w)?
can readily be verified when £ is in z, and when £ is in 2’ and hence this
inequality holds for all £, Thus by Theorems 9 to 11 it follows that

E() = €Pr@a’) £ B((X — p)?) = *(X),
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and therefore
Pr(z) = 1 — 2(X)/é.

This inequality is called T'chebysheff’s inequality. By combining Tcheby-
sheff’s inequality with Theorem 19, one obtains:

TreEorEM 20. If Xy, X, - -+, X, are independent random variables with
common mean p and common variance o and if Ten 1S the set of points £
Sfor which

[(X1(8) + Xa(8) +- -+ Xn(®)/n —p| <€
then
Pr(tes) = 1 — o?/né?
and
lim Pr(z.,) = 1 for every ¢ > 0.

n—

The Strong Law of Large Numbers. The first part of Theorem 20
gives a crude approximation for the probability that the average will
differ from the common mean by less than e. Recall that the second part
of this theorem is the weak law of large numbers. The reasoning by which
one arrived at this result is of course circular but this circularity can be
avoided. The strong law of large numbers is the following:

TureoreM 21. If Xy, X, - -+, X, are independent random variables with
common expected value u and common variance o> and if s the set of points
& for which ‘

lim 18 + Xo(® +---+ Xa(®) _

n—rw n

o

Then Pr(z) = 1.

Even though Pr(z) = 1 it is not in general true that z = 1. If an
element x of B is such that Pr(z) = 1, then z is said to be almost certain.
The strong law of large numbers states that it is almost certain that the
limit of the average is the common expected value.

The following example will help one understand the distinction between
certain and almost certain. Let X be a random variable with distribution
function F defined as follows:

0ifAZ0
F\) = {Aifo=a=1
1if 1 <

Then it is almost certain, but not entirely certain, that X will take on a
value distinct from 14.
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5. CENTRAL LIMIT THEOREM

Distribution of Sums and Averages of Independent Random

Variables. Consider .
e Xt = cos Xt + i sin Xt

where 12 = —1 and ¢ is a parameter. This exponential converts the real
random variable X into a complex valued random variable. The expected
value of the latter random variable is defined in a natural way to be

E(eXY) = E(cos Xt) + iE(sin Xt) = ¢x(t).

The advantage of the exponential is that it converts a sum into a product
and hence enables one to make use of the condition of independence. Thus
if X, Y are independent then it can be shown that ¢***, ¢'¥¢ are independent
and hence by Theorem 16

ox4r(t) = E(@X%e™) = ¢x(Dor(0).

The advantage of the factor 7 is that it produces a bounded random variable
and insures the existence of the expected value for all real values of ¢.
The advantage of the parameter ¢ is that it produces a function in terms
of which one can compute the distribution function. Thus ¢x is a function
of the parameter ¢ called the characteristic function of the random variable X.
Unfortunately the phrase, characteristic function, has two distinct mean-
ings in the theory of probability, namely, characteristic function of a set of
points and characteristic function of a random variable.

Computation of the Characteristic Function of a Simple Random
Variable. Let .

X = Z )\Ic‘l/zk;

k=1

where x4, 2, * -, %, are mutually exclusive and exhaustive. Then
n
X0 T oMy, 0
k=1

for all £, since if £ lies in x, then ¢,,(£) = 1 and the remaining characteristic
functions have the value 0 and hence both sides of the equation become
™ From this it follows that

E(eX) = 25 Pr(ze)e™ = ¢x(2).
k=1
As a special case consider the simple random variable y,. One can write

\bx = Oﬁb:c’ + lkl’:c
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and hence '
¢y.() = ¢ + pe*

where p = Pr(z), ¢ = Pr(z’). E

Next compute the characteristic function for the sum ., 45, + - --
+- ¢, where x;, z2, - - -, , are independent and Pr(zi) = p, Pr(z'y) = ¢
for each k. Then ‘

v _ .
Stay iyttt (8) = T dva(t) = (g 4 pe™H™
‘ k—1
If X has the distribution function F then the characteristic function is
mw=Ew%=fewwm.

This transforms the function F into the function ¢x (essentially the
Laplace-Fourier transform). The inverse transform is

fh e — ¢x(t)e™

—h t

F(FO) + F ) = dt.

2T h > »

To see why this is the case note that

1 hogit _ gintg—irt 1 % git — gintg—irt
Sl TR I S PR S
2mih-od 2m J _, H

1if p <A,
Lt =
0if X < p

This formula is verified by converting the integral into integrals of the form

® sin mt
[y,
—w L

by means of the relation ¢™* = cos m¢ + ¢ sin mi. Now compute the in-
verse transform for a simple random variable

X = Z Ny
k=1

where z;, x3, -« *, T, are mutually exclusive and exhaustive. Since

i Pr(xy) =1,

k=1
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then
n n
) . Pr(z;)et— Pr(xy)e™te—iM
1 ® gt — px(t)e™M &= s * kgl (w2) ;E:l () i
21t J_y ¢ 21t J t
" Pr(a) foo gt — gihutgit
= dt
ké 2mt J_ ¢
= >, Pr(z),
A< A

if A £ any Ax. The final sum is the probability that X will take on a value
less than A and hence this sum is equal to R

F\) = FO\+) = £(F\) + F(\)).

If X equals some Az, then the corresponding term Pr(z;)/2 must be added
and again the result is 14(F(\) + F(A\+4)). The proof for an arbitrary
random variable X consists in approximating X by a simple random vari-
able. In the general case the integral from —o to « may not exist, and
one has to resort to integrating from —h to h and then passing to the limit.

Binomial and Poisson Distributions. If I, is the distribution func-
tion of

X=‘/’xl+¢x2+"‘+\l’xn

where x1, xs, - - -, ¥, are independent and Pr(zy) = p, Pr(2’y) = ¢ for each
k then F,(A) is the probability that less than A\ of the events z;, ---, x,
will succeed. If A # any k then

1 0 it { —iAt
FaQ) = _f e__‘%‘_(_)f_dt

B —i_foo (q"l' p)neit _ (Q+ peit)ne—i)\t i
2t J _y t

n n 1 © eit . eikte—i)\t
— Z ( >qkpn—k__’ — dt
k=0 k 2wt — t

n k n—k
k;)\ (k)p T

where (;) is the number of combinations of n things taken % at a time,
If A = some k, then the corresponding term (})p*q™*/2 must be added.
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This is called the binomial distribution. To obtain an approximation to
this distribution for small p and:large n set p = u/n and let n become
infinite. The limiting distribution F is given by

k

F(\) = D) %e‘”.

k<N

This is called the Poisson distribution.

Normal or Gaussian Distribution. Next consider a sum U, =
X+ X, +---+ X, of independent random variables with a common
distribution. function F. Denote the common expected value by x and
common variance by ¢2. If V3 = (X; — p)/cand V,, = (U, — nu)/o/n
then (see Theorems 18 and 19),

Vi= Y1+ Yo t- -+ Ya)/v/n,
E(Yy) =0=EV,), oY) =1=d(y).

Moreover

dv.(l) = ﬁ Eexp (iYit/V'n) = E"exp (Y1t/Vn)
k=1

= B*(1+ iYut/Vn — V,28/20 +- ),
=(1+0—&/2n+-),

= ((1 - t2/2n —|— .o .)—2n/t2)_t2/2‘
Hence
lim ¢Vn(t) = e_t2/2
n — o
and the limiting distribution is |
oo pit __ e_,zlze_m
—di.

P(N\) = —
» 27t J _ t
To obtain a simpier form for ® compute its derivative. Thus
-+
di’()\) — i e—t2/26—i)\t.
d\ ’

2r J_

Since 12 4+ 2t = (¢ + \)? 4 A%, set u = t + 9\, du = df and obtain

+o0 —A2/2 o0 —\ /2

@ . _1 —+iN 12,-x 2 g © —e , _ Ae
\) = e e dt = e du = )
dA 2 J_y» 2r J_, 27
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A =f e~ %2 gy,

A , A
®(\) = —fe')‘ 12 du = —f e~ du + C.
2w 2 J_

where

Hence

Since & (—) = 0 this means that ¢ = 0. Moreover

B(+0) Afw —urs gy = A
) = — e U = ——-
{ 2rJ_, 2m
Therefore A = \/2—7r and

Y
—u2Z gy,

1
" = Vg

This limiting distribution is called the normal distribution or gaussian
distribution and is shown in Fig. 4.

e
—®

Fra. 4. Normal distribution function.

THEOREM 22. CENTRAL Limrr TarorEM. If Xi, X, - -+ are independent
random variables with a common distribution function F' common expected
value p and common variance o® then the distribution function of (X; + X,
4o+ X, — np)/a\/n converges to the normal distribution function as n
becomes infinite.

If s = Xo/+/n, i.e., A = s7/n/c then the probability that (X; + X,
4o+ X, — nu)/ov/n < \ is equal to the probability that (X; + X,
+---+ X,)/n — p < sand approximately equal to

B(\) = d(s\/n/0).



12-18 GENERAL MATHEMATICS

Figure 5 shows the probability density corresponding to the normal
distribution function.

L a0y

F1c. 5. Probability density for the normal distribution function.

6. RANDOM PROCESSES

A conltinuous random process is a function X which assigns to every real
- number ¢, a random variable X,. If ¢ ranges only over the integers then
the process X is said to be discrete and if ¢ ranges only over the positive
integers then the process X is simply a sequence of random variables.
Consider complex valued random variables, i.e., random variables of the
form X = X; + <X, where X;, X5 are real. The complex conjugate of
X is X; — iX, and is denoted by X. The inner product of two random
variables X, Y is denoted by (X, Y) and defined by the equation

(X, Y) = EXY).
The covariance function R of a process X is defined by the equation
R, 7) = Xigr, Xo).

If R depends only on 7 and not on ¢, then the process is said to be stationary
in the wide sense. A physical example of such a process is the phenomenon
of noise. In the mathematical model (i.e., the process X) the variable ¢
is interpreted as time. The process can be envisioned as being composed
of simple harmonic oscillations in which the amplitudes associated with the
various frequencies are selected in accordance with a certain random pro-
cedure. A simple harmonic oscillation of frequency \ is represented by
™™ and the (complex) amplitude associated with the frequencies be-
tween A and A + d\ is denoted by dY3, and hence the contribution of such
frequencies to the process is

ezm)\t dY)\.

Here Y is a process which assigns to each real number A a random variable
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Y. The process X is obtained by adding the contributions associated with
the various frequencies. Hence

«©

Xi= [ ervan,
—

Thus the spectrum of the process X is described by the process Y.
The expected value of the square of the amplitude associated with the
frequencies between A and A 4 d is denoted by dF(\) and is defined by

dF(\) = @Yy, dYy) = 0.

Thus F is a monotone nondecreasing function. A property of the process
Y, called the property of orthogonal increments, is the following

@Y\, dY,) =0,

if the intervals dX, du have no common points. Hence

Ol o]
R(7) = (Xiys, Xy) = < j ) % f 62’”"“de)
—0 —00
— f f e2ri)\(l+r)627ript (dY)\, dY,‘)

— f e2mIN(ttr) p—2miNe dF()\) =f £2TINT dF()\).
—c0 —00
As a special case of this formula

[=°]
R(O) = f aF).

The following example of a one-dimensional Brownian motion will aid
in visualizing a random process. A tiny mirror is suspended by a fiber.
Particles of air bombard the mirror and cause it to turn through an angle.
A beam of light is reflected by the mirror and the position of the reflection
enables the observer to measure the angle X (¢) through which the mirror
has turned at time {. Since X(f) is produced by the average effect of a
number of bombardments, one might expect X (¢) to have a normal distri-
bution. That is, the probability that X (f) < A is

1 A 2 2
= | e X2 gy
oV 2 j;w ’

where ¢ is the variance and is assumed to be independent of {. From this
formula one can readily show that £(X(¢)) = 0. The zero angle is the angle
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in which the fiber is untwisted. If £ and ¢ 4+ 7 are two times at which the
mirror is observed, the joint probability that X(t) < M and X (¢ + 7) < A,

is
1 A A,
o f f ¢ —2r -+ 12001 gy o,
216° Vi — r%(1) J_o J_w

This is called the bivariate normal distribution. From this formula one
can show that the covariance is

X, X@t+7) = or(7),

and hence that the process is stationary in the wide sense. If it is known
that X () = a then the probability that X({ + 7) < A is

1
eV 2r(1 — r3(7))

Any information concerning the motion previous to time ¢ is irrelevant to
this probability. A process having this property is said to be Markovian.
The assumption that the above process is Markovian implies that

N
f e—lr—ar(MI¥/20* L —r* ()] g,
—0

r(r) = e7*", where k > 0.
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1. NATURE OF STATISTICS

The basic assumption underlying the application of the mathematical
theory of probability and statistics to physical situations is the following:
If a physical “experiment’” is repeated under “identical”’ conditions and
“without bias,”” the observed relative frequency of success of any physical
“event’’ approaches as a limit the probability assigned to this event by
some underlying probability distribution.

Probability theory is the study of probability distributions as mathe-
matical entities. Staiistics is the analysis of probability distributions on
the basis of a number of experimental observations; the distribution is
in general not fully known to start with, and one seeks properties of the
distribution on the basis of the observations. Since an infinite number

1301
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‘of experiments would usually be required to determine a distribution with
precision, it is only rarely possible to answer a statistical question with 100
per cent surety. Accordingly the answer to each statistical question should
consist of two parts: (a) the best possible answer to the question and (b)
the amount of confidence that can be placed in the correctness of this
answer. The omission of (b) greatly diminishes the value of the conclusion.

2. PROBABILITY BACKGROUND

~ The basic probability theory required for statistics is reviewed in Chap.
12. For the sake of convenience the principal definitions are recalled here.
(See Refs. 2, 6.)

Sample Space. The sample space S is the collection of all- possible
outcomes of a physical experiment; the individual outcomes are sample
points. By an event is meant a certain type of outcome; in other words,
a certain set A of sample points. A class @ of events is assumed specified.
To each event A of class @ is assigned a probability, Pr(A), which is a real
number between 0 and 1. One has Pr(#) = 0, Pr(S) = 1, and Pr(A U B)
= Pr(4) 4+ Pr(B), provided A4, B have no points in common (are mutually
exclusive events).

A sample space S is discrete if its points form a finite or infinite sequence

£1, &o, - -+. TFor discrete spaces a probability is usually defined for each
point, and then for each subset A as the sum of the probabilities of the
points in A.

Random Variables. A random variable is a function X = X(¢) which
assigns to each sample point £ a real number z in such a fashion that, for
each a, the set 4 for which x < a has a probability; thus Pr(X =< a) is
well defined. With each random variable X is associated a distribution
F(z); F(a) = Pr(X = a). F(z)isnondecreasing, F(—«) = 0, F(+4x) = 1.
If Xy, -+, X, are random variables associated with the same experiment,
then their joint distribution is F(xy, - - -, x,), where F(ay, - - -, a,) is the
probability assigned to the set where ;- < ay, « -+, 2, £ a,. The random
variable X has a density f, if '

M m@=f.mmu

the random variables X, - - -, X, have a joint density f if

) nmf~wo=f f-nf Fly -+ 1) b - dty.

When the range or collection of values of X forms a discrete sequence
T1,Tgy ***, then
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®) F@) = X Pr(X =) = 3 f(@),

zi Sa i Sa

where Pr(X = x;) = f(z;) is the probability assigned to the set of sample
points for which X = x;. This can be generalized to joint distributions.
Random variables X, - - -, X, are mutually ndependent if

) Flxy, -+, 2a) = Fr(21) -+ - Folxn),

where I' is the joint distribution and F;(x;) is the distribution of X.
Throughout the following it will be assumed that either the range of
each random variable is discrete or else each distribution has a density
(continuous case).
The expectation or mean of a random variable X is

f i af(x) do (continuous case),
(5) EX) = "=
> wf(xs) (discrete case).

7

If ¢ is a continuous function of z, then

f ) ¢()f(x) dz  (continuous case),
(6) E(¢(X)) = "
Z o(@)f(x2) (discrete case).

Moments. The moments of X about the origin are the numbers
) i = E(X"), k=1,2 ---.
The moments of X about the mean are defined by
(8) we=E((X = b, k=23, -,

where p = E(X) = p’;. The quantity o® = p, is the variance of X, while
¢ = V/o? is the standard deviation of X.

By expanding the quantity (r — w)* by the binomial formula and
applying eq. (8), one obtains an expression for the u; in terms of u'y, -- -,
[T

‘ e = ' — kp'p_qp 4o
In particular,

(9) o = o — 20y + (W1)? = e — i

The mean p is a measure of the location of the “center” of the distribution,
while the variance ¢® is a measure of the “spread’” of the distribution.
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Other possible measures of central tendency are:

Median: a point z¢ such that Pr(X = xy) = Pr(X = ay),

Mode: a point zg where f(z) is 2 maximum,

Midrange: £(a + b), if @ £ © £ b is the smallest interval containing
all z for which f(z) > 0.

Other measures of the spread of the distribution are:

Mean deviation from the mean = E (| X — ul),
Probable error: a number « such that Pr(|X — p| < a) = 3.

For comparison and tabulating purposes it is useful to describe a random
variable in a manner independent of origin and scale. These requirements
are met by the standardized variable X* = (X — u)/o, which has mean 0,
has standard deviation 1, is dimensionless, and is invariant under any
linear change of variable: X’ = aX + b.

3. IMPORTANT PROBABILITY DISTRIBUTIONS

Binomial or Bernoulli Distribution. If X represents the number of
“successes’” in n independent trials of an experiment, with probability p
of “success” each time, then X takes on the values 0, 1, 2, ---, n with
probabilities

n X n—=x n! T n—=x
(10) f(@) = )pq =—"72p%" " ¢g=1-—p
x zln — x)!

Hence the sample space S has 2" points £, each representing one particular
succession of successes and failures. The random variable X assigns to
each ¢ the number of successes in £. The mean and standard deviation
are found to be

an u = np, o= Vapg-

Poisson Distribution. A discrete random variable X with values
0,1, 2, .-, is said to have a Poisson distribution if the corresponding

function f(x) has form

[0
(12) f((l)) = e—a; (11 =0,1,2 -- ’);
where « is a positive constant. One finds

(13) b= a o= Va-

For large n and small p the binomial distribution (10) is well approximated
by the distribution (12), with « = np.
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If a number of events occur independently in space or time and if X
represents the number of these events occurring in any given space or
time interval, then the Poisson distribution is a good model for the distribu-
tion of X. Exzamples are the number of red corpuscles on a microscope
slide, the rate of emission of electrons or a-particles, the number of in-
coming calls to a telephone exchange.

Normal Distribution. Let X be a continuous random variable with
density

1 ,
14 z) = — . g~ (@20
(14) é(x) o

Then X is said to have a normal distribution; its mean and standard deviation
are u and o. One terms ¢(x) the normal density function of mean u and
standard deviation ¢; the corresponding distribution

(15) B(x) = f o() dt

is the normal distribution function. The function & is tabulated for ¢ = 0
and ¢ = 1, and any other case is reduced to this by replacing X by its
standardized variable X* (Sect. 2). See Table 2, Sect. 9.

Tor large values of n, the binomial distribution may be approximated
by the normal distribution having u = np, ¢ = Vnpg. More precisely,
if X has a binomial distribution, then asn — «

(16) Pr(X2 <)) = Pt < 1) — a(0).
v npq

The X%Distribution. Let X be a continuous random variable with
values in the range 0 < 2 < «. Then X is said to have a X*-distribution
with n degrees of freedom, if X has density

1
17 ka(®) = —g———a™/B"1g™=12) = 0.
(17) @ = gy~ 2
One finds
(18) B=mn, eo=Van (=12 --.).

This type of distribution is of great importance in the theory of sampling
of normal populations (Sect. 4). See Table 3, Sect. 9.
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Student t-Distribution. ILet X be a continuous random variable
with density

(19)

n-+1
P( 2 > .’122 —(n+1)/2
(@) = 7 T(n/2) (1 + —> '

n

Then X is said to have a Student {-distribution with n degrees of freedom
(m=1,2 --.). One finds

(20) p=0, ¢ =

n—2

Asn — «, s,(x) approaches the normal density function of mean 0 and
standard deviation 1. The t¢-distribution is of value in sampling theory
(Sect. 4). See Table 4, Sect. 9.

4. SAMPLING

In a great variety of practical problems a precise answer is obtainable
only by making a very large number of measurements. For the sake of
economy, one makes a smaller number of measurements and estimates
the true answer from these. The theory of such methods of estimation is
called sampling. Lzamples. The average height of 1,000,000 soldiers can
be estimated by averaging the heights of a selected 1000 soldiers. The
outcome of a presidential election ean be estimated by polling a small
number of voters.

The suceessive measurements in an experiment yield a random sequence
Xy, - -+, X, called a sample. )

ExampLE. The measurements of the height of 1000 soldiers yield 1000
numbers. One can regard each soldier as a sample point £, the aggregrate
of all 1,000,000 soldiers as the sample space S. If the heights follow some
definite pattern, then there will be a definite probability that the height
X1 be less than a fixed value. Hence, there is a distribution function F,(x,)
associated with X; and z; can be regarded as the value of a random vari-
able X;. Similar statements apply to the measurements Xy, -+, X,.
If the measurements are independent (i.e., each one is made without
considering the others), all measurements have the same distribution
F(x) and X3, ---, X, are random variables with joint distribution

@n Gy, + -y @n) = F@)F (o) - F(xn).

The assumptions of the example considered will be assumed to hold
generally. A sample space is assumed given, with associated probabilities.
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A measurement z is a value of a random variable X; the probability that
X £ ais F(a), where F is the distribution of X. Successive measurements
vield random variables X;, -+, X,. It will be assumed that these are
independent, so that eq. (21) gives the joint distribution.

Sample Moments. The sample mean or average is the number

Xyt X,

n

(22) T =

The sample moments about the origin and about the mean are defined
respectively as

La 12 .
(23) my=— D XE om=— 3 (X — 2,

N i=1 N =1
so that £ = m/;. The number s* = m, is the sample variance. One has
the formula

(24) s =m/y — %

One can regard Z and s? as estimates for the mean u and variance ¢ of X;
# and 5%, and indeed all the moments, are random variables, being functions
of Xy, -+, Xn. .

From the fact that all X; have a common distribution F(x), one can
deduce properties of the distribution of the various moments. For example,

1 1 1
(25) Ez) =E (— EXi) =-3EX,))=-Zu=p
n n n
Similarly,
-1
(26) B(s?) = ——~ 2
n

Unbiased Estimate. A sample estimate is termed unbiased if its expec-
tation is equal to the parameter being estimated. Iquation (25) shows
that Z is an unbiased estimate of u; eq. (26) shows that s? is not an unbiased
estimate of o2, although [n/(n — 1)]s? is such an unbiased estimate.
Unbiasedness is a useful property of an estimate, but it is not as important
as some other properties. The bias in s® need be considered only if n is
sufficiently small (less than 20, for example), so that (n — 1)/n is ap-
preciably different from 1.
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Computational Procedures

Data Classification. The computation of sample moments for large
samples is simplified by the classification of the data. In this procedure
the sample range, the interval from the smallest to the largest sample value,
is divided into approximately fifteen class intervals of equal width (the
class width). The number of measurements whose z; value lies in each
class interval, the frequency of the class interval, is then recorded, as well
as the midpoint of each interval, the class mark. In the subsequent com-
putation one then replaces each sample value x; by the class mark of the
corresponding class interval; usually a negligible error is introduced by this
replacement. Ezample. In measuring height of a population to the
nearest 0.1 in. one can choose class intervals 1 in. in width; to avoid am-
biguity the end points of the class intervals should be 60.05 in., 61.05 in.,
- -+, for instance, rather than 60 in., 61 in., - - .

Computation. If there are 4 class intervals with frequencies f; and
class marks & (j = 1, - - -, h), then the moments are computed as follows:

1 h
@7) == 2,
=1
1 h
(28) m'y == 3 fi&f,
N j=1
1 h
(29) § == 2 i@ — ) =m'y — 2
nj—1

The computation can be further simplified by coding the data; that is,
by introducing new measurements y; by a linear change of variables:

(30) T; = ay; + b (a = 0),

where the coefficients a, b are chosen to simplify the y; data. The new
mean and variance 7 and s,” are related to the old, £ and s.%, by the equa-
tions

(31) T=aj+b, 8.2 = a’s,’.

If a is chosen to be the class width and b is taken to be one of the class
marks (usually chosen near the middle of the range), then the y; are integers,
positive or negative, so that the computation is considerably simplified.
After § and s,? are computed, Z and s,® are found from eq. (31). The
procedure is illustrated in tabular form in Table 1. '
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TaBLE 1. COMPUTATION OF SAMPLE MEAN AND VARIANCE

Coded Marks
Class .

Intervals Frequency Class Mark T;—b
a; — aj_1 = . % yi== Jiys S5
7] j—1 = G fi T a
a—a1 /] N1 1= ao+ 3a -5 —-10 50
a1—ag M| f Ty=a1+ 3a —4 —24 96
as—asz ’ -3
az—04 -2
a4—Aas -1
a——az b=as+ 3a 0 0 0
a;—Aasg 1
ag——0ag 2
p—1——, i fu Z

Totals n ny nm's,y

st =m'yy — 7P, Z=aj+0d, 8;° = a2

Distribution of Sample Moments

If some information is known concerning the distribution F(zx) of the
random variable X being measured, then one can draw conclusions as to
the distributions of the sample moments. These conclusions in turn per-
mit one to make statements as to the accuracy of the sample moments as es-
timates of the true moments. For example, suppose that the variable X is
distributed uniformly over an interval of length 1; that is, F'(z) = f(z) = 1
forc £ z £ ¢ + 1, and f(z) = 0 otherwise. If ¢ is unknown, each sample
will give information as to its value. A single measurement X then allows
one to conclude that X — 1 = ¢ < X, the mean ¢ + 14 would be esti-
mated as X and one knows that, with probability 1, the mean lies
between X — 14 and X + 14,

One now proceeds to list properties of the distribution of sample moments
when various assumptions are made concerning the distribution F(z).
These results are applied below to estimation of accuracy of the estimates.

Distribution of ¥ When ¢ Is Known. If X is normally distributed,
then 7 is also normally distributed, with mean u and variance ¢2/n (Sect. 3).
Equivalently, one can state that

(32) o =TT BN

o

has a normal distribution of mean 0 and variance 1. The conclusion is
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approximately true even if X does not have a normal distribution, provided
n is large. (See Chap. 12.)

Distribution of ¥ When ¢ Is Unknown. Let s = V's?, the sample
standard deviation and let

(33) AP/ S—

’
§

so that ¢ can be considered as a random variable. If X is normally dis-

tributed, then ¢ has a Student {-distribution with n — 1 degrees of freedom.

Again the conclusion is approximately true even if X does not have a normal

distribution, provided n is large. Furthermore, the -distribution approaches

the normal distribution of mean 0 and variance 1 as n — o,
Distribution of s When ¢ Is Unknown. Let

(34) U =—"

If X is normally distributed, then u has a x>-distribution with n — 1
degrees of freedom. Again the conclusion is approximately true for large
n, regardless of ’the form of F(x).

Confidence Intervals and Hypothesis Testing

The results described are now applied to obtain estimates for the accuracy
of T and §? as estimates of u and ¢2. The accuracy will be described in the
terminology of confidence intervals. The statement “the interval (a, b)
is a 95 per cent confidence interval for p” means that Pr(A < u £ B)
is 0.95, where A, B are random variables with observed values a, b. One
can also say “either ¢ < u £ b or an event of probability only 0.05 has
occurred in the sampling.”

Confidence Intervals for p When ¢ Is Known. The 95 per
cent interval is obtained from the fact that (2 — u)A/n/c has a normal
distribution of mean 0 and variance 1. By means of tables (Sect. 9) one
determines the number £, 95 on the normal density curve such that 95
per cent of the area lies between —t4 g5 and £y 95; that is,

(35) B(ty.95) — P(—lo.95) = 0.95.
(See Fig. 1.) One finds t.95 = 1.96. Hence with probability 0.95

—1.96 < (& — wVn/o < 1.96
or equivalently,
1.960 1.96¢

Va RSV

(36) z—

Il/\
ll/\
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Thus the 95 per cent confidence interval has end points 4= 1.96 ¢/A/n.
In a similar manner one obtains confidence intervals for other percentages.

.
$(x) = area under normal
curve from —oo to x

(t)
0.95

0.025 025 ¢
—=t095 0 to.95

Frc. 1. Normal density curve with 95 per cent limits indicated.

Confidence Intervals for 1 When ¢ Is Unknown. Now s must be
used instead of ¢ and (& — p)V'n — 1/s has a {-distribution with n — 1
degrees of freedom. The point ¢y.95 is obtained from the tables of Sect. 9.
Then with probability 0.95

.95 S (X —w)Vn —1/s = fo.05

or
sto.95 sty.95

(37 Y e E+\/—n:-

Thus T == sty.95/ Vi —1 are the end points of the 95 per cent confidence

interval for u. A similar procedure is used for other percentages.
Confidence Intervals for ¢. One uses the fact that ns?/¢> has a

x2-distribution with n — 1 degrees of freedom. Since the x?-distribution

lIA
IIA

by —1(x)

0.95

0.025 0025
2095 1095

Tic. 2. x>density curve with 95 per cent confidence limits indicated.

is unsymmetrical, two points .95 and ”g.95 must be found with the aid
of tables (Sect. 9) such that the areas under the x2-density curve to the
left of t'y.95 and to the right of ¢/ g5 both equal 0.025 (Fig. 2). Then with
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probability 0.95
74 82" n”
Yo.os = —5 = t'0.05 ,
g
or
ns? , _ ns
(38) —— <o’ s —-
t"0.95 t'0.95

Confidence Interval for Binomially Distributed Population. The
preceding confidence intervals were derived under the assumption that the
underlying distribution F(x) was normal, or else that » was so large that
appropriate approximations could be made. Another case of frequent
occurrence is that for which the distribution is binomial (Sect. 3) with
unknown probability p of success. The obvious estimate for p is the
sample proportion of successes xz/n. To obtain a confidence interval
we use the fact that for n large the binomial distribution can be approxi-
mated by the normal distribution of mean np and variance npq. Hence
with probability 0.95

A

—lo.05 = na = lo.95,

where .95 = 1.96, as obtained from Table 2 in Sect. 9. The end points
of the confidence interval for p are obtained by setting (xz — np)/
Vap (1 — p) equal to ==y 95 and solving the resulting quadratic equation
for p.  In this way the end points are found as

42z Ve + 4z(1 — z/n)

’ c =1 K
2+ ) 0.95
* or, approximately for large n, as
x , \/x(n — )
—_ :t . —3-—..
n 0.95 nA

Hypothesis Testing. Frequently, instead of obtaining estimates or
confidence intervals for moments, one is merely interested in answering
“yes” or “no” to certain hypotheses about the population. For example,
one is asked, “On the basis of the observed data, are we justified in reject-
ing the assumption that u has a specified value?”’ One method of answer-
ing such a question is to construct a confidence interval, say a 95 per cent
confidence interval, for u. If the specified value lies outside (inside) this
interval, one replies, “Yes, one is (is not) justified in rejecting the assump-
tion at the 95 per cent level of significance.” See Refs. 2, 4, 5.
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5. BIVARIATE DISTRIBUTIONS

Let X and Y be two random variables associated with the same experi-
ment (that is, defined on the same sample space), and not necessarily
independent. The following questions arise very frequently: “Is there
any functional dependence between X and Y?” ‘“Knowing the value of
X, how would one best predict the value of Y?” If there is a strict func-
tional relation ¥ = ¢(X), then all the values (z, y) fall on the curve
y = ¢(x). In practice, see Fig. 3, this arises very rarely. Instead, one

y
y = d(x)

x
x x x

F1c. 3. Regression curve of y on z.

may find the values (z, y) distributed very close to a curve y = ¢(z); that
is, the density f(x, y¥) may be very high near the curve and negligible far
from the curve. For fixed © = ¢, the values are distributed along the
line x = ¢ with one-dimensional density, again large near y = ¢(z) and
small when y differs greatly from y = ¢(x). This one-dimensional density
is simply the conditional density (Chap. 12)

&y _1G y),
fi@)

(39) Pyl = —
f 1t v) dy

where f1(z), f2(y) are the density functions for X and Y. The best estimate
for ¢(z) at z = ¢ is the mean value of Y on the line z = ¢; that is, the
value of

(40) pylz = E(y|z) = f yp(y|z) dy.

Equation (40) defines uy, as a function of z, the true regression function
of Y on X.

Computation. If f(z, y) is not completely known, measurements in
an experiment will lead to various averages from which p,, can be esti-
mated. If the pairs (X, V4), -+, (X,, V,) are the experimental values
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(random vectors) then one computes the quantities

1 2 12
E== 2 X == Z » (sample means)
N k=1 n k=1
41) | n |
87 =~ 2 (X — &7 =—E (Yr — 9%
N k=1 n k=1
1 n
(42) sz =— 2, (X; — %) (Y, — 9) (sample moments of second order),
N =1
(43) = (sample coefficient of correlation).

SzSy
These can be considered as estimates for the true means, moments about
the mean, and coefficient of correlation (Chap. 12)

(41%) e = f i@ dr, oy = f v (¥) dy,

—w

(42) @i = f f (@ — )i — w) Sz, dxdy (5 = 1,2),

ag12
(43" p = ———.
V 011022

Computation of the experimental quantities (41), (42), and (43) can be
simplified by coding techniques analogous to those of Sect. 4. (See Refs.
3,8.)

Curve-Fitting by Least Squares

From a graphical representation of the data (xx, yx), one is usually led
to some notion of the form of the regression function puy, (mean of Y for
each X). One then chooses an estimate ), for this function with one or
more adjustable parameters. The parameters are then chosen so that

. n
Z (yx — I’vylxk)2
k=1

has its minimum value. This is the method of fitting data by least squares.
The simplest form for gy, is Az 4 B, where A, B are adjustable. The
method of least squares leads to the values

Sy Sy

(44) 4 =2, B =g —rz—.
Sz Sz

More generally, one can let
(45) ﬁylx"_" Ao+ A4+ Amxm,
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where the constants Ag, -:-, 4, are adjustable. The method of least
squares leads to the following linear equations for 4o, -+, 4,,:
(46) Z Z A ka-J = E xkj?/k (] = 0; 1) ) m)

i=0 k=1 k=1

Confidence Intervals

In order to obtain confidence intervals for the estimates, it is necessary
to make certain assumptions concerning the form of the underlying density
f(z, y). Let us assume that the true regression function u,; is linear, and
that the distribution of Y for fixed X is normal, with variance independent
of x. These assumptions are often satisfied in practical problems. In
practice, the variable X is usually not determined by random samples,
but it is given preassigned values and the corresponding values of Y are
determined experimentally. (Exzample. In a problem of detection of
electromagnetic radiation, X might denote the range and Y the signal
strength; the range X would be varied at regular intervals and the signal
strength Y recorded once or several times for each value of X.) Under
these assumptions, the true regression function is of form ax + b. The
coefficients a and b are estimated by A, B as given in eq. (44). The two
quantities for which confidence intervals are usually required are puy,
itself and the regression coefficient a.

The required intervals are obtained as follows. One defines

12 o
(47) 8% = - > (i — Az, — B)? = 5,2(1 — r?).
n k=1

It can then be shown that the quantities

(uyjz — Az — B)+s;+Vn — 2 (a — A)s;Vn—2

V@ —2)?+ 528 S
possess t-distributions with n — 2 degrées of freedom. Thus 95 per cent
confidence intervals for p,. and a have end points

v (11 - "f)z + Sx2's

A B + . ,
T+ 0.95 o m =3

(48)

(49)

S
A & g5 —F7——>
0-95 sx\/ n— 2
respectively, where {495 is determined as in Sect. 4 from the ¢-distribution
with n — 2 degrees of freedom.
The preceding process can be generalized to the case of more than two
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variables. For details on this and on computational procedures, see
~ Refs. 3, 5, 8.

6. TESTS FOR GOODNESS OF FIT

A problem of frequent occurrence is to determine whether a set of
experimentally determined data is consistent with, or fits, some pre-
assigned hypothetical probability distribution. The usual way of studying
this is to divide the range of the variable X into % subintervals, not neces-
sarily equal in length. The number f; of observations falling in the ith sub-
interval can then be counted. Let p; be the probability assigned to the
ith subinterval by the given hypothetical probability distribution. Let
n be the total number of observations. It can then be shown that the
quantity
; 2
50) w e 3 Ui =)

i=1 np:;
has approximately a x*-distribution with n — 1 degrees of freedom. From
eq. (50) it is apparent that large values of u correspond to large differences
between the observed and theoretical distributions. If it is greater than the
0.95 point of the x>-table, one can say (with 95 per cent certainty) that the
sample did not come from the given hypothetical distribution.

The approximation by a x*-distribution is usually sufficiently accurate
if each p; > 5/n and k& > 5.

Frequently in such a problem the hypothetical distribution is not
completely specified, but contains some adjustable parameters. For
example, one might wish to test whether a sample comes from a normal
population, in which case the mean and variance of the population must
first be estimated from the sample. It can be shown that the x’-test
usually remains valid, provided one further degree of freedom is sub-
tracted for each parameter estimated. More precisely, in order for the
test to be valid, the parameters must be estimated by the method of maxi-
mum likelihood. See Refs. 4, 5.

7. SEQUENTIAL ANALYSIS

The usual method of collecting data consists of the determination of a
fixed number of observations and their subsequent statistical analysis.
Frequently a considerable reduction in the number of observations re-
quired can be made by making the observations in sequence and re-
analyzing the data after each observation. Such a process is known as a
sequential analysis and is particularly useful for such problems as production
testing.

ExampLE. Consider a population whose density function f(x; 6) depends
on some parameter § (mean, variance, etc.) whose value is not known; let
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us suppose that 6 can take only one of two given values 6y, 6;. The prob-
lem is to decide which value is the correct one. In such a decision problem,
errors can be made in two ways: by deciding that 6; is correct when 8,
is actually the true value of 6, or by deciding that 6y is correct when 6,
is actually the true value. Denote the probabilities to be assigned to
these two types of errors by « and 8 respectively. The values of « and 8
can be preassigned by an experimenter, and clearly both should be small
if one wants to have great confidence in one’s decision; however, the
smaller « and 8 are taken to be the more observations will be required to
come to a decision.

Let 4, o, - - - be the sequence of observed values, and let f(z; 6;) denote
the density function of the population when 6; is the true value of 6, j =
0, 1. Define the quantities

n P n
(51) P = IIfl@s6) (G =01, g = —-

=1 POn

Each Pj, can be found from the preceding one after each observation by
‘multiplying by the corresponding f(x,; 6;). The decision rule is then the
following,.

If
1-8

o

(52 £ cn< =8
l—a

take another observation. If ¢, < 8/(1 — «), decide that 6, is the correct

value of 6; if ¢, = (1 — B)/e, decide that 6; is the correct value of 6.

Thus the rule is to continue sampling until ¢, leaves the interval (52),

choosing 6y if ¢, first leaves the interval to the left and choosing 6, if ¢,

first leaves the interval to the right.

A formula is available which allows one to estimate the mean number
of observations required before a decision is reached. In general, this
number is substantially less than the number required when the sample
size is fixed, although one must expect as many or more observations to
be required in a small percentage of cases. (See Ref. 7.)

8. MONTE CARLO METHOD

A great variety of mathematical and physical problems of apparently
nonstatistical nature can be reformulated in statistical form and solved
by sampling techniques. For example, the area under a curve y = f(z),
0<z=1 0= f(x) £1 can be formulated as the probability that a
“random point” (z, y) in the square 0 £ £ 1, 0 < y < 1 satisfies the

1
inequality ¥y < f(x). Thus computation of f f(z) dx is achieved by choos-
0
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ing many random points (2, ) and counting the proportion which satisfy
the condition y £ f(x).
. The general program of such statistical solutions to essentially non-
statistical problems is described as the Monte Carlo method. The basic
idea is very old, but the method has been the subject of unusual interest
in the last decade, especially because of the availability of high-speed
digital computing machines.

For information on the subject see Ref. 9, which contains an extensive
bibliography.

9. STATISTICAL TABLES

TasLe 2. Tue CumuraTivE NorMaL DistrisurioN Fuxcrion (Ref. 10)

1 _z?
P(u) = —= e 2 dzr ror 0.00 <ux299.
\/E; o0

u .00 .01 .02 .03 .04 .05 .06 07 .08 .09

0 | .5000 .5040 .5080 .5120 5160 5199 5239 5279 5319 5359

.1 |- .5308 .5438 .5478 L5517 5557 .5596 .5636 .5675 5714 5753

2 | 5793 .5832 L5871 .5910 .5948 5987 .6026 .6064 .6103 6141

3 | .6179 .6217 6255 .6293 .6331 .6368 .6406 .6443 .6480 6517

4 | .6554 L6591 .6628 6664 L6700 6736 6772 .6808 .6844 .6879

5 | .6915 .6950 .6985 .7019 7054 7088 7123 7157 7190 7224

6 | 7257 7291 7324 7357 7389 7422 7454 7486 517 7549

7| 7580 7611 .7642 7673 7703 7734 7764 7794 7823 7852

8 | .7881 .7910 7939 7967 7995 .8023 .8051 .8078 .8106 .8133

9 | .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 8365 .8389
1.0 | .8413 .8438 .8461 .8485 .8508 .8531 8554 8577 8599 .8621
11| .8643 .8665 .8686 .8708 .8729 .8749 8770 .8790 8810 .8830
1.2 | .8849 .8869 .8888 .8907 8925 8944 .8962 .8980 .8997 90147
1.3 | 90320  .90490  .90658  .90824  .90988  .91149  .91309 91466 91621 91774
1.4 | 91924 92073 92220  .92364  .92507  .92647  .92785  .92922  .03056  .93189
1.5 | 93319 93448 93574 93699  .93822 93943 94062 94179 94295 94408
1.6 | 94520  .94630  .94738 94845 94950  .05053  .95154 95254 95352 .95449
1.7 | .95543 05637 95728 95818 95007 95094 96080  .96164  .96246  .96327
1.8 | 96407  .96485  .96562 96638 96712 96784  .96856 96926 96995 97062
1.9 | 97128 97193 97257 97320  .97381 97441 97500  .97558 97615 97670
2.0 | 97725 97778 97831 97882 97932 97982 298030 98077 98124 98169
2.1 | 98214 98257 98300 98341 08382 98422 98461 98500 98537  .98574
2.2 | 98610  .98645 98679 98713 98745 98778 98809 08840 98870 98899
2.3 | .98928 ,98956 .98083 9%0097 920358  .9%0613  .0%0863 921106 921344  .9%1576
2.4 | 921802  .9%22024  .9%240  .9%2451  .9%2656 922857 923053  .9%3244 923431 923613
2.5 | 923790 923963  .9%4132 924297 024457  .9%4614 924766 924915 925060  .925201
26 | 925339 925473 925604 925731  .9%5855  .925075  .926003  .9%6207  .9%6319  .9%6427
2.7 | .9%533  .9%6636  .9%6736  .9%6833  .9%6928  .9%7020 927110  .927197 927282  .927365
2.8 | 9%7445 927523  .9%7500 927673  .9%7T44 9?7814 927882 927048  .9%8012 928074
29 | 9%134 978193 978250 . 978305 978359  .9%8411  .9%8462  .9%8511 978559 978605

Example: $(2.57) = 924915 = 994915,
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P = the probability of a x* deviation greater than the tabulated value

Degrees
o P =0.99 0.98 0.95 0.90 0.80 0.70 0.50 0.30 0.20 0.10 0.05 0.02 0.01
freedcm
1 0.000157{ 0.000628| 0.00393 0.0158 0.0642 0.148 0.455 1.074 1.642 2.706 3.841 5.412 6.635
2 .0201 0.0404 .103 .211 0.446 0.713 1.386 .408 3.219 4.605 5.991 7.824 9.210
3 0.115 0.185 0.352 0.584 1.005 1.424 2.366 3.665 4.642 6.251 7.815 9.837 | 11.341
4 0.297 0.429 0.711 1.064 1.649 2.195 3.357 4.878 5.989 7.779 9.488 11.668 13.277
5 0.554 0.752 1.145 1.610 2.343 3.000 4,351 6.064 7.289 9.236 11.070 13.388 15.086
6 0.872 1,134 1.635 2.204 3.070 3.828 5.348 7.231 8.558 10.645 12,592 15.033 | 16.812
7 1.239 1.564 2.167 2.833 3.822 4.671 6.346 8.383 9.803 12,017 14.067 16.622 18.475
8 1.646 2.032 2.733 3.490 4.594 5.527 7.344 9.524 11.030 13.362 15.507 18.168 20.090
9 2.088 2.532 3.325 4.168 5.380 6.393 8.343 10.656 12,242 14.684 16.919 19.679 21,666
10 2.558 3.059 3.940 4.865 6.179 7.267 9.342 11.781 13.442 15.987 18.307 21.161 | 23.209
11 3.053 3.609 4.575 5,578 6.989 8.148 10.341 12.899 14.631 17.275 19.675 22.618 24,725
12 3.571 4.178 5.226 6.3 7.807 9.034 11.340 14.011 15.812 18.549 21.026 24.054 26.217
13 4,107 4,765 5.892 7.042 8.634 9.926 12,340 15.119 16.985 19.812 22,362 25.472 27.688
14 4.660 5.368 6.571 7.790 9.467 10.821 13.339 16.222 18.151 21.064 23.685 26.873 29.141
15 5.229 5.985 7.261 8.547 10.307 11.721 14.339 17.322 19.311 22.307 24.996 28.259 30.578
16 5.812 6.614 7.962 9.312 11.152 12.624 15.338 18.418 20.465 23.542 26.296 29.633 32,000
17 6.408 7.255 8.672 10.085 12.002 13.531 16.338 19.511 21.615 24.769 27.587 30.995 33.409
18 7.015 7.906 9.390 10.865 12.857 14.440 17.338 20.601 22.760 25.989 28.869 32.346 34.805
19 7.633 8.567 10.117 11.651 13.716 15.352 18.338 21.683 23.900 27.204 30.144 33.687 36.191
20 8.260 9.237 10.851 12.443 14.578 16.266 19.337 22.775 25.038 28.412 31.410 35.020 37.566
21 8.897 9.915 11.591 3.240 15.445 17.182 20.337 23.858 26.171 29.615 32.671 36.343 | 38.932
22 9.542 10.600 12.338 14.041 16.314 18.101 21.337 24,939 27.301 30.813 33.924 37.659 40.289
23 10.196 11.293 13.091 14.848 17.187 19.021 22.337 26.018 28.429 32.007 35.172 38.968 41.638
24 10.8556 11,992 13.848 15.659 18.062 19.943 23.337 27.096 29.553 33.196 36.415 40.270 42.980
25 11.524 12.697 14.611 16.473 18.940 20.867 24.337 28.172 30.675 34.382 37.652 41.566 44.314
26 12.198 13.409 15.379 17.292 19.820 21.792 25.336 29.246 31.795 35.563 38.885 42,856 45.642
27 12.879 14.125 16.151 18.114 20.703 22.719 26.336 30.319 32.912 36.741 40.113 44.140 | 46.963
28 13.565 14,847 16.928 18.939 21.588 23.647 27.336 31.391 34.027 37.916 41.337 45.419 48.273
29 14.256 15.574 17.708 19,768 22.475 24.577 28.336 32.461 35.139 39.087 42,557 46.693 49.588
30 14.953 16.306 18.493 20.599 23.364 25.508 29.336 33.530 36.250 40.256 43,773 47.962 50.892

For degrees of freedom greater than 30, the expression V2x% —

of freedom.

Reproduced from Statistical Methods for Research Workers, 6th ed., with the permission of the author, R. A. Fisher, and his publisher, Oliver and Boyd, Edinburgh.

V27" — 1 may be used as a normal deviate with unit variance, where n’ is the number of degrees

SOIISILVIS
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TaBLE 4. StupENT'S ¢ DISTRIBUTION *

Degrees Probability of a deviation greater than ¢
of
freedom n o5 o1 025 .05 1 15
1 63.657 | 31.821 | 12.706 | 6.314 | 3.078 | 1.963
2 9925 | 6065 | 4.303 | 2.920 | 1.88 | 1.386
3 584 | 4541 | 3.182 | 2.353 | 1.638 | 1.250
4 4604 | 3747 | 2776 | 2.132 | 1.533 | 1.190
5 4032 | 3365 | 2.571 | 2.015 | 1.476 | 1.156
6 a707 | 3.143 | 2.447 | 1.043 | 1.440 | 1.13¢
7 3409 | 2008 | 2.365 | 1.805 | 1.415 | 1.119
8 3355 | 2.806 | 2.306 | 1.860 | 1.307 | 1.108
9 3950 | 2821 | 2.262 | 1.833 | 1.383 | 1.100
10 3160 | 2764 | 2.228 | 1.812 | 1.372 | 1.003
1 3106 | 2718 | 2.200 | 1.796 | 1.363 | 1.088
12 s o055 | 268 | 2170 | 1782 | 1.356 | 1.083
13 so012 | 2650 | 2.160 | 1.771 | 1.350 | 1.079
14 o077 | 2624 | 2.145 | 1.761 | 1.345 | 1.076
15 o047 | 2602 | 2131 | 1.753 | 1.341 | 1.074
16 o021 | 2583 | 2.120 | 1.746 | 1.337 | 1.071
17 2808 | 2.567 | 2.110 | 1.740 | 1.333 | 1.069
18 o878 | o552 | 2.100 | 1.73¢ | 1.330 | 1.067
19 2861 | 2.539 | 2.003 | 1.720 | 1.328 | 1.066
20 2845 | 2508 | 2.086 | 1.725 | 1.325 | 1.064
21 2831 | 2518 | 2080 | 1.721 | 1.323 | 1.063
22 os19 | 2508 | 2074 | 1717 | 1.321 | 1.061
23 ag07r | 2500 | 2.060 | 1.714 | 1.319 | 1.060
24 o707 | 2402 | 20064 | 1711 | 1.318 | 1.059
25 ovsr | 2.485 | 2.060 | 1.708 | 1.316 | 1.058
26 o9 | 2479 | 205 | 1.706 | 1.315 | 1.058
27 ori | 2413 | 2082 | 1703 | 1.314 | 1.057
28 o763 | 2467 | 2.048 | 1.701 | 1.313 | 1.056
29 arse | 2462 | 2.045 | 1.600 | 1.311 | 1.055
30 o750 | 2457 | 2.042 | 1.697 | 1.310 | 1.055
© 9576 | 2326 | 1.060 | 1645 | 1.282 | 1.036

The probability of a deviation numerically greater than ¢ is twice the

probability given at the head of the table.

* This table is reproduced from_Statistical Methods for Research Workers, with the generous
permission of the author, Professor R. A, Fisher, and the publishers, Messrs. Oliver and Boyd.
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1. INTERPOLATION, CURVE FITTING, DIFFERENTIATION,
AND INTEGRATION Bernard Dimsdale

Definitions. Suppose f(z) is a function about which the following is
known: at each of n 4+ 1 points zg, 1, - - -, T, called the basic set of points,
the numerical value of f or of one of its derivatives is known. It is to be
noted that x may represent one or more independent variables. Suppose
g(x; ag, ay, -+, a,) is given analytically and the a’s are determined so
that g has the same numerical property as f at each point of the basic
set. Then ¢ is called an interpolating function for f, and B = f — g is called
the remainder.

14-01
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In the event that g is linear with respect to the o’s, that is g(z; @) =
aogo(x) + arg1(x) +-- -+ aug.(x) the interpolating function is called
linear, and the functions go, g1, - -+, gn are called basic interpolating func-
tions. In the further event that x is a single variable and g;(z) = 2* the
function ¢ is called an interpolating polynomial.

If a function §(x; ag, - - -, am) is given analytically for m < n, any require-
ment whatsoever on f — g over the basic set establishes 7 as a curve-fitting
Junction. If that requirement is that

n

2 @) — g(@i; a)Pw(s)

=0

be minimal then g is a least square fit to f, relative to the weight function w,
which is presumed to be positive. Again g may be nonlinear, linear, or
polynomial.

Interpolation

General Solution of Interpolating Problem. For nonlinear g the
definitions imply that the a’s can be determined by solving n 4+ 1 simul-
taneous nonlinear algebraic equations. For linear g the equations for a
are linear and the problem is solved when an (n + 1)st order matrix is
inverted, which of course presupposes that it is not singular. No element
of this matrix depends on the values of f or its derivatives, so that the in-
verted matrix can be used for all those functions f for which the conditions
of interpolation, the basic interpolating functions, and the basic set of
points are the same.

Interpolating Polynomials for Arbitrary Basic Point Sets. If the
derivatives of f are not involved in the interpolation, then

=, hi(z)
g(z) = E)wﬂ%);
(n+1) ()7,
N ASRICIIC)
(n+4+ 1!
where h(z) is the product of all ¢ — x,, v = 0, 1, - - -, n; hi(z) is the same

except that'the factor x — z; is deleted, f™ ¥V (¢) is the (n + 1)st deriva-
tive of f(x), £ is an unknown function of x, but is some number between
the least and the greatest of the basic set of points. This is Lagrange’s
Jormula, and has been put in practicable computing form by Aitken. Form
the table
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20 Jo,0

z1 fi0 Ji1

o foo fer Joo

23 fso0 fa1 fa2 Sa3

..........

where fj 0 = f(z;),

fugon = fi5+ G D I,

Ty — 5

j>0,

If sufficient information about some derivative, say the pth, is available
to show that R = f® (£)h(x)/p! is sufficiently small for interpolation
purposes, p values of x and f will give the interpolated value of f as the
rightmost number in the table, within an error bounded by R. If not,
then an iterative process can be undertaken, starting with two points and
adding one point at a time together with entries in the table until two
consecutive values in the next to the last column are sufficiently close.
ExamrrE. 2 = 04.

k T S0 fea Jr2 Sr3 Sra
0 0 1]

1 1 1 0.4

2 2 8 1.6 —-0.32

3 0.5 0.125 0.1 0.04 0.064

4 -1 -1 0.4 04 0.064 0.064

Hence f(0.4) is taken to be 0.064. Here f(z) = 2%, f®(x) = 0. Thus
four points would have been sufficient.

In the event that derivatives are also given, Neville’s procedure applics
(see Ref. 1). '

Interpolating Polynomials for Uniformly Spaced Points. In the
event that the basic set of points has the property that x4y — z, = A,
where h does not change with p, the procedure to be followed, if derivatives
do not enter, involves a difference table as follows:

o Jp Afpr

Afp Afp1
Tp+1 Jp+1 A%,

Afp+1 A%,
Tpiz Sp+o Ap41

Afpte Afps1
Tp+s Sp+s Ay

where A¥f, = A¥7Yf, . — AFTYf and f; = f(x;), that is, any element with
a A is the difference of its two adjacent left neighbors, and is obtained by
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subtracting the upper one from the lower one, and the subscripts on f are
constant along a line running diagonally downward to the right.
Let
T — Xy

h ,
wu—1)---(uw—r+1)

rl

u =

(u)r =
then
g@) = fp + (w — PhAS, + (u — )28 + -+ -+ (u = p)ra¥f,,

and .
R(z) = f*DERF (0 — p)py,

which is Newton’s forward formula over the basic set of points

Tps Tp+1y *° s Tp+k-

There is just one interpolation polynomial through these points, but it
has many representations in terms of differences. In fact, there is a
representation involving the set of differences obtained by starting with
the highest order difference, adding to the set one of its two left neighbors,
and repeating until the f column is reached. The precise representation
can be written down by use of a Lozenge diagram (see Ref. 2 or 3). Since
all these are representations of the same interpolation polynomial, the
remainder term is the same for all of them, and depends only on the par-
ticular highest order difference used.

The Newton Interpolating Formulas. With the notation [x] =
largest integer in x, so that, for example, [2] = [2.2] = [5/2] = 2, the
following four formulas serve three purposes:

(a) Newlton forward (basic set xg, 1, -+, Tpn):
1) = fo+ >_: (W80 + D @FH (w41,
(b) Newton backward (basic set @_y, -+, 71, o):
f@) =fo+ é (w4 p — Dp0%_p + VO (4 4 n)pyr

(c) Newton-Gauss 1 (basic set 2_y, T1—y, * -, Tpny; v = [0n/2]):

f@) =fo+ 2 w+[p/2 = 3DpA% i + SOV O (w + [0/2]) g1
r=1
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(d) Newion-Gauss 2 (basic set £_y, 1y, ***, Tuy; v = [0/2 + 1]):

f@)=fo + 22 (w+ [p/2D)pA% _pj24sa
p=1
+ OO (w4 /2 + FD)nga
All the ¢'s, of course, are different and have values somewhere in the interval
defined by the basic set of points.
Examrre. Tind f(3.4256).
z f(@) f A A%
3.0 0.4771213

0.0280287
3.2 0.5051500 —0.0016998
0.0263289 0.0001945
3.4 0.5314789 —0.0015053 ‘
0.0248236 0.0001628
3.6 0.5563025 —0.0013425
0.0234811 0.0001378
3.8 0.5797836 —0.0012047
0.0222764
4.0 0.6020600
by using
(a) Newton forward, zo = 3.4.
(1), = u = 0.128, (u)g = —0.055808, (u); = +0.05224,
f(x) = 0.5314789 + 0.0248236(u); — 0.0013425(u)2 -+ 0.0001378(u)s
= 0.5347384.

(b) Newton backward, zo = 3.6.
(u); = u= —0.872, (u+ 1), = —0.055808, (w4 2); = —0.02098,
f(x) = 0.5563025 + 0.0248236(w); — 0.0015053(u + 1),

+ 0.0001945(u + 2);

= (0.5347362.
(¢) Newton-Gauss 1, o = 3.4.
(w); = u = 0.128, (w)e = —0.055808, (u 4 1); = —0.02098,
flx) = 0.5314789 + 0.0248236(w); — 0.0015053(u)s + 0.0001628(u + 1);
= 0.5347369.

Here f(x) is logex and f(z) is in fact 0.5347366.
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In interpolating for f(z) it is reasonable to select a formula such that
Zg, @1 (or Zo, x—;) contains x, for then the contribution of the differences
to the computed f(x) will in general be smallest, a point of considerable
interest if remainders cannot be computed. If this condition is accepted,
then forward differences must be used at the beginning of a table or im-
mediately following a discontinuity in f or its pertinent derivatives. Like-
wise backward differences must be used at the end of a table or preceding
a discontinuity. Centered differences may be used in the body of the
table. In this connection a further comment should be made. The func-
tion (u)n41 takes on much smaller values on the average near the center
of its basic set of points than near the edge. Using centered differences will
therefore normally achieve a given accuracy with less differences.

Curve Fitting
Linear Least Square Curve Fitting. Upon differentiating

n

Z [aogo(ms) + algl(xs) + -t amgm(xs) - f(xs)]zw(xs)y

s=0

with respect to each of the a’s, and setting these derivatives equal to zero,
the equations )

Gkoao""‘leal +"'+kaam=Fk, k:O, 1’-c.’m

result, where

Gij = ggi(%)gj(xs)w(a%):
F; = Z gi(xs)f (xs)w(zs),
=0

thus leading again to a linear system of equations to be solved. Note
that the matrix G is the product of a rectangular matrix whose elements
are g;(z;) by its transpose and is therefore a non-negative definite sym-
metric matrix. Symmetry implies that the amount of labor in solving
the linear system is half the normal amount, and non-negative definiteness
implies that any indication of singularity obtained means that the system
is singular, which is not necessarily true in the more general case. Note
that nothing up to this point prevents x from representing more than one
independent variable, so that surfaces in many variables are amenable to
this kind of fit.
~ The task of forming the G matrix will greatly exceed the task of inverting
if n is much greater than m, since the number of multiplications (and
additions) is measured by 14mn?, whereas the corresponding number for the
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inversion is 14m®. If, however, gi(x) is 2%, ¢, or ¢**V'=1, then Gi; = G,,
if 4+ 7 =r+4s Thus only 2n + 1 of these numbers need be computed,
at a cost of about mn multiplications and additions. That is, Hinear least
square fitting with polynomials in z, in €%, or with trigonometric sums in-
volving terms such as sin kx, cos kz is much less laborious than the more
general case.

Machine Solution for Linear Fitting. In any but the simplest cases,
for very limited values of m and =, this kind of calculation is fit material
for an automatic computer. If subroutines for evaluation of gi(z), for
the product of two rectangular matrices and for inversion of positive
definite symmetric matrices are available, it is a relatively simple matter
to program the solution of the problem, including evaluation of residuals,
that is, of

Z asgs(ze) — fxw),

$=0
for all %.

The technique for polynomial least square fitting has been reworked by
von Holdt (Ref. 4) so that any given set of data (one independent variable)
can be fitted with polynomials of every order from 1 to m, and all residuals
computed for each polynomial, with a total computing labor no greater
than that required for direct fitting, and calculation of residuals, of an mth
order polynomial. With such a procedure it is possible, for example, to
continue the computation until a polynomial is reached for which the
largest absolute residual is sufficiently small. There is no doubt that this
is possible, barring singularities, since for m = n every residual is zero.

The method of von Holdt loses its value for large values of n, because
there is a rapid accumulation of roundoff error. This difficulty is mini-
mized by a method which makes use of orthogonal polynomials (Ref. 4a).

Nonlinear Least Square Curve Fitting. The problem of selecting
a = (ag, a1, -+, Q) SO 48 to minimize

T(a) = 3 [9(xs; @) — flaa)Pw(zs)
$=0

may be approached by Newton’s method as follows. Let a® = a¢°, a,°,
-+, a,? be arbitrarily assigned and compute

" dg(xs; a) dg(xs; )
Gij = 2, ’

s=0  0a; da;

n

. A0
3 () — glae; a0y 2859,

8=0 aai

e
I
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the notation d¢g(xs; a®)/da; meaning that g is differentiated partially with
respect to a; and a is then set equal to a°, which is a set of known numbers.
Solve the system of equations

> Qi Aaj = F, i=0,1,---,m,

7=0
for Aa; and let
ot =a+ Aa;, j=0,1,---, m.

With a;! as a new a;°, iterate the process, which may converge to a solution
of the problem or, more precisely, to a relative minimum of 7. The @
matrix here is again non-negative definite.

Levenberg’s Method. Unfortunately this process may not converge.
Levenberg (Ref. 5) has provided a modification which guarantees that
each step of the process reduces the value of T unless 7 is already at a
relative minimum. The iterations go as follows:

1. Compute the G matrix as before. If G has no zeros on the diagonal,
call it the current G' matrix. If it has, replace them by arbitrary positive
numbers, for which neighboring nonzero diagonal elements will suffice,
and call this the current G matrix. No damage is suffered if small but
nonzero elements are replaced in this way.

2. If the current G matrix is singular, or effectively singular for practical
purposes, go to (4). If not, compute Aa and hence a', by using the current
@ matrix.

3. Compute T'(a'). If T(a') < T(a°), let a' become the new a° and go
to (1). If T(a') = T(a%, go to (4).

4. Double the diagonal elements of the current G' to form a new current
@ and go to (2).

The description is complete, except for a choice of criterion on which
to terminate the process. The criterion may involve specifying an ac-
ceptable value of T, an acceptable value of the maximum residual, or a
maximum number of doublings of the diagonal, for example.

In practice, it develops that for most iterations no replacing of diagonal
" elements and no doubling are necessary. Such iterative steps are identical
with Newton’s method. Only when Newton’s method fails does the ad-
ditional procedure become operative. Therefore, speaking loosely, Leven-
berg’s method resembles Newton’s method as closely as possible without
being subject to the possibility of divergence.

Differentiation

Forward and Backward Formulas for Numerical Differentiation.
The most commonly used formulas are those obtained by differentiating
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the Newton formulas (see subsection, The Newton Interpolating For-
mulas) for equally spaced arguments. Ior Newlon's forward difference
formula the result is

hmf(m) (xO) = Z bm,s A3f0 + hn+1bm,n+lf(n+l)(s))

S=m

where O (x,) is the mth derivative of f(z) at * = z¢ and Table 1 gives
values of by, adequate for finding derivatives up to and including order
6 by interpolating over as many as eight points.

Tor Newton’s backward formula the result is

k’"f(’”)(xo) — Z (_1)3+mbm’s Asf—s + (—l)n+m+lhn+lbm,n+1f(n+l)(f).

S=m

Again, Table 1 gives the values of b.

TaBLE 1. COEFFICIENTS FOR NEWTON’S DIFFERENCE FORMULAS

S bl,s b2,s b3,s b4,s bb.s bﬁ,x
1 1

2 -1 1

3 1 —1 1

I T

5 3 -3 3 ~2 1
6~ W —¥  ® -1
R S T 3
I . . R A

Centered Formulas for Numerical Differentiation. Upon differen-
tiating the two Newton-Gauss formulas given in the preceding section it
develops that for derivatives of even order every other term vanishes,
and that for odd derivatives a similar result can be achieved by adding
the two formulas and dividing by 2. This is Stirling’s formula which, for
a basic set of 2N 4 1 points, is

h2m_lf(2m—1)(x0) Z Cm,s — Azs—lf—s Azs_lfl—s] + RN,

R = mz—:l (2N + D!2m — Dlesyr,v4 p2N+2

s—0 2s+ DI2N + 2m — 25 — 1)!

m—2s —1f2N+2m—23—1 (Es)

For even derivatives over 2N + 1 points the result is
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N
hsz(2m) (xO) = Z dm,s Azsf—-s + RN,

§=m

m—1
— (2N —I- 1)'(2m) !Cs 1,N+1
Ev=X +
so (28 + DI2N + 2m — 2s)!
Table 2 gives values of the ¢’s and d’s for derivatives of orders one through
six for interpolations over as many as eleven points.

h(2N+2m-—2s)f(2N+2m—23) (gs) .

TaBLE 2. COEFFICIENTS FOR STIRLING'S FORMULA

J 1 Coj c3j dyj d; dsj
1 1 1
2 —1 1 - 1
1 1 1 1
3 g - 1 oo —% 1
4 — 1 a1 —1 1 T _1
140 120 3 560 240 T
1 41 13 1 41 13
5 630 —3021 144 3150 T 7560 240
6 —_ 1 479 —_139
27720 151200 6048

Examrie. Find f/(3.4), f”(3.4) by Stirling’s formulas by using the data
for the example in the subsection on the Newton Interpolating Formulas.

Here 20 =34,
Bf' (o) = c1,15(Af—1 + Afo) + c1,25 (A% _o + A3f_y),
0.2f'(xo) = 1(0.0263289 + 0.0248236) — +5(0.0001945 -+ 0.0001628)
= 0.1277282,
R (x0) = d1,1 A3 + dy 2 A%,
~0.0015053 — - (—0.0000317)
= —0.03757.

Since f'(x) = Ine/x, f(z) = In e/2? the true values are 0.1277337 and
0.0375687, respectively.

Remarks on Numerical Differentiation. The formulas given above
apply only to calculation of derivatives at tabular points. For derivatives
at other points and for derivatives of functions tabulated at unequal
intervals, it is possible, but not practical, to differentiate Lagrange’s
formula. The most obvious thing to do in this case is to form a new table
at equal intervals which includes the point at which a derivative is re-
quired. In the first case, the coefficients to be used in the interpolation
formulas do not change in moving from one point to the next, which
simplifies matters considerably. It is to be observed that the situation
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then becomes complex as regards the remainder term. On the other
hand, it is also to be observed that derivatives cannot be computed with
an accuracy greater than the number of significant figures in the highest
ovder difference used. If, therefore, an interpolation can be performed
with sufficient accuracy to guarantee the last significant figure written
down, differentiation on the interpolated table will give as much accuracy
as is available from the original table. Similar remarks apply to the dif-
ferentiation of functions having more than one variable,

Integration

General Remarks on Numerical Integration. The most useful
characteristic of the integral, from the point of view of numerical integra-
tion is the fact that

) ) do = ) @) da + / ) da,

which means that the problem can be reduced to finding integrals over
small ranges.

. There are many possibilities in developing formulas with regard to choice
of basic sets of points for the interpolation polynomials to be used. The
two sets commonly used will be discussed here: (1) equally spaced points
starting with a and ending with b, which leads to a set of formulas called
Cotes’s formulas; (2) a spacing developed by Gauss.

Cotes’s Formulas for Numerical Integration. Let

z; = a + th, t=0,1,---, n,

with @z, = b, that is, define h = (b — a)/n. Let f; = f(x;). Then the
formulas are as shown in Table 3. The formulas for n =1 and n = 2
are known respectively as the trapezoidal rule and Simpson’s rule. Except

TaBLE 3. Cores’s ForMULAS

b h3
J @) de = 300+ 1) — 55/P®,  n=1

= g(fo + 40 - f2) — h"f;‘;(&)' n=2
=BG+ 5 + 320+ 5 + 120 = TTRE
= LS 11Ga + 10 + 21603 + ) + 27 -+ 1)

9hd

+ 272 = 13570 ®,  n=6
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for n = 1, formulas for odd n are not given, since their remainder term has
the same order of magnitude in % as the preceding even n.

The choice of n is a matter of judgment. Generally, the larger n the
less evaluation of integrand is required for given accuracy. If the inte-
grand requires much computing, this is important.

Exampre. If f(xr) = e /2, a = 1, b > a then |f™(z)| < 1.36n! If it
is required that the remainder term shall not exceed 1071° then for the
above n’s the A’s are 0.0008, 0.013, 0.03, 0.06, and the number of evaluations
of integrand per unit b — a is 1250, 77, 33, 16 respectively.

Gauss’s Formula. For any n let

xi=a+(b_a)£i7 7:=071:"')[n/2]7
=b_(b_a)fi; i:[n/2]+1,~-,n.
Then, for n = 2N
b N—1
[ 1@ ar = 0 - lduty + T A+ fov—il;

=0

forn =2N + 1

b N
fﬂ@m=®~@2AM+ﬁm%

=0

where the A’s and the s are given in Table 4.

TaBLE 4. VALUEs oF A; AND z; IN Gauss’s FormuLa

n=1 £y = 021132 48654 Ay =05

n=2 £ = 0.11270 16654 Ao = 5
£=105 Ay =4

n=3 £y = 0.06043 18442 Ay = 0.17392 74226
£ = 0.33000 94782 Ay = 0.32607 25774

n=4 £ = 0.04691 00770 Ao = 0.11846 34425
£ = 0.23076 53449 Ay = 0.23931 43352
£ =105 Ay = 028444 44444

n=5 £ = 0.03376 52429 Ay = 0.08566 22462
£ = 0.16939 53068 Ay = 0.18038 07865
£ = 0.38069 04070 A, = 023395 69672

n==6 £ = 0.02544 60438 Ao = 0.06474 24831
£ = 0.12023 44072 A; = 0.13985 26957
£, = 0.20707 74243 Ay = 0.19091 50253
£ =105 Az = 020807 95918

The remainder term is of order h***!. TFor further development, see
Hobson (Ref. 6).
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Other Integration Methods. Tchebysheff has developed a method in
which the numerical integral has the form

k(fo+ fu+---+fa)

which is useful if f represents data subject to uniform errors, since no error
is weighted more than another.

TFor multiple integration the methods given here may be applied re-
peatedly. If the number of repeated integrations is quite large, the Monte
Carlo method is useful.

Tor integrals over an infinite range and for infinite integrands, trans-
formations of the variable of integration can frequently be found which
remove the difficulty.

2. MATRIX INVERSION AND SIMULTANEOUS
LINEAR EQUATIONS v . Murray Mannos

General Remarks. The development of large scale electronic digital
computers has made it numerically possible to invert many large size
matrices and to solve large systems of linear equations heretofore con-
sidered impractical because of their large size. Problems being attacked
by matrix inversion include: :

(a) The numerical solution of a differential equation, a partial dif-
ferential equation, or an integral equation satisfying boundary conditions
is often achieved by resolving the problem into a large approximating set
of algebraic equations.

() A nonlinear problem is frequently replaced by a sequence of linear
systems yielding successively improved approximations to the original
problem.

(¢) Large systems of linear equations, at least in part, are serving as
preliminary models for economic and business type problems. The object in
linear programming (see Chap. 15), for example, is to maximize (minimize)
a linear objective function such as profit (cost) subject to the restraints
imposed by a system of linear equations (or inequalities). If the inverse
of the matrix of coeflicients of a linear system of equations is already
known, the solution to the system is obtained by merely multiplying the
inverse by the column vector whose components consist of constants on
the right-hand side of the equalities. In the revised simplex technique
(Ref. 7) designed for solving linear programming problems it is the inverse
of certain basic column vectors that is calculated at each iteration or
stage of the algorithm.
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Practical ways of solving systems of linear equations are divided into
two categories: the direct and indirect methods.

(a) The direct method yields an exact solution in a finite number of
steps provided no roundoff errors are permitted.

(b) The indirect method usually involves an infinite number of iterations
to get an exact solution. In practice one accepts the fact that one cannot
get a precise answer but must be satisfied with a result sufficiently close
to the exact result. At this point in the indirect method the calculation
is broken off. To be really sure that the answer is sufficiently close either
some estimate of roundoff errors must be made or the closeness must be
determined perhaps by some physical considerations. Severity of roundoff
errors may easily render useless results.

The discussion will be confined to matrices whose elements are real
and to linear systems whose coefficients are real. Many of the methods
and results described apply equally well to the complex elements and
coefficients simply by making appropriate word changes. Furthermore,
any malriz of order n with complex coefficients may be represented by a real
matrix of order 2n.

No “best method” for either inverting matrices or solving linear systems
of equations can be recommended. For a given technique, a matrix or
a linear system of equations can always be constructed which will not
work too well but which may work better with some other technique.
In some cases it is a combination of methods, perhaps a direct followed
by an indirect method, that works well for a system of linear equations.
Tll-conditioned matrices, of which the favorite seems to be the Hilbert
matrix, impose an extremely stringent test upon the accuracy of any given
matrix inversion technique. A measure of the ill-conditioning of a matrix
may. be looked upon as the relative smallness of its determinant compared
with that of its individual elements. This will suffice here although more
sophisticated measures could be used to interpret the notion of ill-con-
ditioned matrices. The Hilbert matrix is denoted by H = (h;;) where
hif = 1/1‘+J+ 1 (7';.7 = 1) 27 "'7")'

Having obtained by a given technique a not entirely satisfactory ap-
proximation for the inverse of a matrix or for a solution to a system of
linear equations, one may consider using techniques for improving the
inverse of the matrix or the solution to the linear system of equations as
the case may be.

To facilitate the evaluation of procedures for matriz inversion or solution
of linear systems for use on digital computers, a summary table of approximate
storage requirements and number of operations ts presented at the end of the .
section.
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Matrix Inversion

Each nonsingular square matrix A of order n has an inverse A~ such that

(1) AAT = A4 = 1.
If for A = (ai;) the elements a;; (¢, j = 1, - - -, n) are real, then the elements
by of A7V = (b)) G, j =1, -+, n) are also real. If the a;; of the

matrix A are specified, the problem is to find the numbers b;; of 471,
For certain types of matrices this is relatively simple.

(@) If D = (d;;) is a diagonal matriz, that is, di; = 0, ¢ 7 jand di; # 0
(i =1, 2, -+, n), then the elements of its inverse D™ = (b;;) are b;; = 0,
i#j,and by = 1/di; (0= 1,2, -+, n).

(b) If T = (aq;) is a nonsingular lower triangular matriz, that is, a;; = 0,
i <j,and a; #0 (¢ =1,2, -, n), the elements of its inverse 7! = B
= (b;;) can be obtained essentially by solving a series of linear equations
in one unknown. Multiplying each of the columns of B by the first row
of T yields :

aubu = ]., aublj =0 (] = 2, ey TL).

This yields by; = 1/ay; and by; =0 (F = 2, --+, n). Similarly, multiply-"
ing B by the second row of T’ gives

ag1b12 + aggbas = 1; a21by; + agebs; = 0 (=1, -+, n: j#=2).
Substituting the known by; ( = 1, -+ -, n) into the latter equations yields
new values by; (j =2, ---, n) from the resulting n linear equations in

each of these unknowns. By continuing in this way, multiplication of
each of the columns of B by the nth row of T gives

On1bin + Anobon + -+ F Cpnbnn = 1;
anlblj + an2b2j +--e annbnj =0 (.7 =1,-- N = 1)

Substituting the known b;; (¢ =1, -+-, n —1;5 =1, --- n) yields the
values b,; (j = 1, + -+, n) of the last row of B.

(c) An old standard method for inverting matrices is given by A™! =
(1/det A)(---), where the expression in parenthesis is the transpose of
the matrix of cofactors of the elements a;; of the given matrix A. This
method is not to be recommended as practical for n greater than 3 or 4.

(d) If one has already computed the characteristic polynomial or better
still the minimum polynomial of a matrix

m(x) = 2™+ @™ - 1T+ A am # 0,
then A= = (=1/a,)(A™ ! + a4™ 2 + - -+ a,,_1]) since A satisfies its
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minimum equation. In general it may be as much trouble calculating the
characteristic or minimum polynomial as it is to invert the matrix itself.

(e) Let A; denote the 7th row of the nonsingular matrix A and I; the
ith row of the idenitity matrix. Then

Ai= 2 a5l;  (G=1,---,n).
j=1
If one has solved for the I;’s in terms of the A,’s, then
n
Ii = 3. bidy,
k=1

and the matrix of coefficients of the latter equation is the desired inverse,
ie., A7! = (b;;). In general, this method is more cumbersome than a
number of the methods described below.

Jordan-Gauss Method. Write the matrix A with the identity matrix
beside it as shown

a;; Qg oo A1n 1 0O “ . 0

Q1 QG2+ G2, |0 1 --- 0
2

An1 Qn2 *°* Qpp 0 0 cee 1

A series of elementary row operations will be applied to A and these
will also be applied in the same order to /. When A has been reduced to
I by a series of elementary row transformations, then I will in turn be
transformed into A™! by the same transformations, and the process will
be finished. If A is nonsingular, then for some ¢ = 1, ---, n it follows
that a;; ¢ 0. One can by an exchange of rows guarantee that the element
in the first row of the first column is different from zero.

In case the matrix (a;;) has been altered by an exchange of rows one now
denotes the left-hand matrix of (2) by (bs;;). Then adding to the 7th row
—b;1 /by times the first row (¢ = 2, -+ -, n) the new left-hand matrix of
(2) takes the form

by €z - Cin
0 ¢ -+ cCop
(3)

0 Cn2 *** Cun

The minor of order n — 1 in the lower right-hand corner of the matrix
(3) has rank » — 1 so that at least one of the elements c; = 0 (j = 2, - - -,
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n). Applying the same argument as before to this minor, all elements below
the diagonal element of column 2 of the left-hand matrix in (2) may be
reduced to zero. Similarly the element in the first row, second column
may be reduced to zero. The first column remains unchanged while the
second one has been altered to the desired form.

By continuing in this way the left-hand side of (2) may be reduced to
the diagonal form :

by O e 0

0 d22 cee 0

0 0 e Zan

with each diagonal element being different from 0. By dividing the first
row of (2) by by, the second row by das, etc., the left-hand matrix of (2)
is finally reduced to the identity and the right-hand matrix is now 4!,

The diagonal elements by, dag- - - of the first, second, - - - columns which
are used to reduce the remaining elements of their respective columns to
zero are referred to as pivots. Care should be exercised whenever possible
not to select a pivot which is too small or too large; otherwise, loss of sig-
nificance among other difficulties may arise. Numerous variations of the
use of elementary row operations for inverting matrices exist in the litera-
ture (Ref. 8).

Partition Method. Let the nonsingular n X n matrix A be partitioned

as
A — [All A12:|
Ay Ay

where A;; is an m X m minor (m < n) which is likewise nonsingular.
Then the inverse A~ of A is given by the matrix

A=t = [Bn 312]
By; By

where By; = Ay + XA™1Y,

By = — XA,
By = —A7'Y,
B22 = A—-lr
and
X = A4y, Y = Ay 4,7,

A=Ay — YAs = Ags — A1 X.
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Inverting a matrix of order n has been reduced to inverting a matrix of
m, and another of order n — m. However, one has to pay the price of
performing a number of matrix multiplications afterwards.

Morris Escalator Method. By starting with the inverse of the
2 X 2 principal minor My, in the upper left-hand corner of the nonsingular
matrix A one may by the partition method obtain the inverse of the 3 X 3
principal minor M3 in the upper left-hand corner of A. Then Ms; is
used to compute the inverse M4y of the 4 X 4 principal minor in the first
four rows and columns. Step by step, one dimension at a time, the parti-
tion procedure is carried out until A™! is obtained. The process is un-
interrupted until the inverse of one of the M ; fails to exist, a fact which
is established by noting that the corresponding A; = 0. This situation
is remedied by interchanging the th row with an appropriate row, say the
jth, of the remaining n — 7 rows of 4, computing the inverse of the new
1 X ¢ principal minor in the left-hand corner, and then continuing as before.

In order to obtain A~! one must interchange the ith and jth columns of
the resulting inverse so obtained. If several of the inverses of principal
minors encountered fail to exist, a similar procedure applies in each instance.

Gram Schmidt Orthogonalization Method. Premultiplication of
the nonsingular matrix A by an appropriate matrix P transforms A into an
orthogonal matriz, i.e.,

@ PA = 0.

Since the inverse of an orthogonal matrix is its own transpose, it follows
from eq. (4) that

A7l = A'P'P,
where P = DN

i 0 0 00 07

0 1 0 00 0

0 0 1 00 0

N=P, ;- PoPi;Pi1=]ca Cg -+ €y 10 0
0 0 0 01 0
10 O 0 00 1]
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1/|1Q:| © =0 0
0 1/1Qz| --- 0
D =
0 0 1/1Qa|
and in turn
AQ'; . .
Ci]"__—QjQ,j’ .7=1r2;"';7'_1)

where A; denotes the ¢th row of A, @; denotes the jth row of @ = N4, and
|Q;| denotes the length of the ith row of @ considered as a row vector.
Inversion of Modified Matrices. If the inverse of a matrix A is
known, the inverse of a matrix differing from A in only an element, a row,
or a column can be found as a result. If the matrix differs from A by several
elements, rows, or columns, its inverse may be realized by repeated ap-
plication of this method. The method is based on the matrix identity

(A7) (y'4A™)

5 A N1 = 41 _ ,
©® e (1 +yd)

where x and y are arbitrary column vectors. The matrix 2y’ can be made
to consist of all zeros except the element in the ith row and jth column
where it is to contain a fixed value ¢. This is easily achieved by taking
x = ce; and y = e; where ¢; is the unit column vector containing a 1 in
the 7th position and O elsewhere. By taking y = ¢; the matrix zy’ has z
for its ith column and all other columns consist of zeros. Hence, if the
vector x stands for the vector difference of the sth column of the matrix
whose inverse is desired and the ¢th column of A, the required inverse is
obtained from eq. (5). A similar argument applies if the matrices differ
only in one row.

Improving a Computed Inverse (Hotelling and Bodewig, see Refs.
9 and 10). Suppose that the matrix Cy is considered a sufficiently good
approximation to the inverse of the matrix A so that B = I — AC, has
very small elements. If necessary, for some specific purpose, the computed
inverse can be improved by forming the sequence

Cr=Coa(+B", k=12 ...

Actually, the sequence converges to A ™! and so A~ is expressible in the
following form of an infinite product
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(6) A7t = 0o [I T + B?*™.
k=1

Very frequently the improvement found by computing Co(I + B) or
perhaps Co(I + B)(I + B?) is sufficiently satisfactory. Although there
are a number of variations other than eq. (6) for expressing A, the
present, scheme has some merit when using an electronic digital computing
machine, since it is only necessary to keep successively squared powers of
B, adding this to the identity matrix I, and premultiplying by the last
computed approximation to A7,

Systems of Linear Equations. Direct Methods

Direct methods arrive at an exact solution in a finite sequence of arith-
metical operations.
Elimination. Given a set of m < n linear equations in n unknowns

01171 + a19%e + - - -+ A1, = by

02171 + Q29T -+ + -+ AonTn = Do

9

Am1®1 + GmoZe + -+ Gpnn = bn

or more briefly in matrix notation

the augmented matrix (4 |b) is operated on by a sequence of elementary
row operations which reduce the matrix of coefficients A to echelon form
(see Chap. 3). If a row of the reduced form of (4|b) is of the form (0,
0, ---, 0, ¢), where ¢ % 0, the system (7) is inconsistent; otherwise, it is
consistent. Arbitrary values are assigned to those z’s which do not cor-
respond to a leading coefficient of 1 in some line; while the remaining z’s
may be solved for in terms of these parameters one at a time as a hnear
equation in one unknown whose coefficient is 1.

Note. In the remainder of this section only the case with m = n and
the matrix A nonsingular will be considered.

Use of Cramer’s Rule. Let A(k) denote the matrix constructed from A
in (7) by replacing column & by the column b of right-hand coefficients.
Then the unique solution to (7) is given by Cramer’s rule in the following
form as a ratio of determinants

det A (k)

= — k:l’..- .
Tk det A ( :n)

For n > 3 or 4 this method is not to be recommended as efficient.
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Known Inverse. If the inverse A™! of A has already been calculated
by any of the previously described or perhaps other methods, the solution

in matrix form is given by
z = A7,

However, if A~ must be computed for the sole purpose of getting z, the
method is not always efficient for large values of n.

Conjugate Gradient Method. Most of the iterative schemes involve an
infinite number of iterations and so are classified as indirect methods.
However, an outstanding iterative scheme called the conjugate gradient
method involves but a finite number of iterations and so is classified as
a direct method. Because of the way in which the algorithm for this
scheme is built up, it seems more appropriate to discuss it after the gradient
method, an indirect method. The elegant finite algorithm for the con-
jugate gradient method seems to have been independently discovered by
Stiefel, Hestenes, and Lanczos (Ref. 11). For a linear system Az = b,
det A # 0, of n equations the algorithm starts with an initial guess zg
building up successive approximations z;, ---, &, and finally terminates
after at most n of these steps or iterations. The corresponding residual

vectors
T7;=A:lii—b (71=O,1,---,n)

so formed are mutually orthogonal to the preceding ones. If 7; %0
(z=0,1, ---, n — 1) then r, orthogonal to each r; means r, must be the
null vector 0; since n 4 1 linearly independent vectors of dimension n

cannot exist.

Systems of Linear Equations: Indirect Methods

By and large this discussion includes most iterative methods since it
takes an infinite number of steps to carry through the whole process. An
iteration for solving a system of linear equations is a set of rules for operat-
ing on an approximate solution (z;®, --., x,) to obtain an improved
or more precise solution (z;%*V, ... z,%+D)  The sequence of ap-
proximate solutions so defined must converge to the actual solution of the
given system of equations. In some cases it is a pronounced advantage
to start out with a rather good initial approximation (z;®, --., 2,©),
whereas in others this is not necessarily true. It is frequently advantageous
to improve the solution obtained by a direct method by a few iterations,
since the direct solution usually is afflicted with roundoff errors.

Seidel Method. One starts off with a guess (z;©, 2,9, --., 2,©@)
as the initial solution to the linear system (7). Substituting in the first
equation of (7) the values 25 for z,, 23 for x3, - --, and finally z,©®
for z,, and then solving for x yields a new value ;" as the first component
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of the next approximate solution. Next by substituting in the second
equation of (7) the newly gained value ;¥ for z, and 239 for 23, - - -,
2,© for x,, and then solving for x5, one obtains a new value 2, as the
second component of the next approximation. Continuing in this fashion
and finally substituting in the nth or last equation of (7) the values z; for
zy, 22 for xg, -+, 2, for z,_; and solving for z, yields the final
component z, of the new iteration (2;¥, 2V, -+, 2,). The ap-
proximation (z;V, 2,@®, .-+, 2,V) is used primarily in the next iteration
to obtain the improved approximation (z;®, z,®, ---, 2,¥). One
continues in this way.

The process is very well adapted to machine usage. Convergence is
assured when either the matrix of coefficients A is positive definite or when
the diagonal element of the ith row dominates the rest of the row for each
7, that is, when ’

lai| > 2 lag| (G =1,2, -+, n).
17#j

Convergence is also guaranteed for additional types of matrices, and there
are a number of variations of this procedure. In particular, the “back
and forth” Seidel method due to Aitken and Rosser was especially de-
signed to handle those cases in which convergence of the regular Seidel
method was erratic. .

Relaxation Method. First write the system (7) in the form

by — a1 — ae%e — - — A%y = 0

by — A91%1 — Qoo — -+ — Agnxy = 0
®)

by — @n1®1 — Qualy — + <+ — Qppty, = 0
and assume that none of the diagonal elements a;; (¢ = 1, - - -, n) is equal
to zero. Then take 2@ = (2, @, 2,@ ... 2@ ... 2,©) asan initial

guess to the solution. If it should accidentally happen that 2® satisfies
(8), one is finished. If not, define the residual vector by r® = (r; @,
7@ oo, O, where ;@ (4 =1, 2, --+, n) is the value or residual ob-
tained by substituting z‘® in the left-hand side of the ith equation of (8).
Suppose that 7, is a component of largest magnitude in r?. The object
then is to reduce the residual 7, to 0 by altering the value of the ith
component ;¥ of z® while keeping the remaining components of z®
fixed. The next trial solution z‘) is constructed as follows:

W = g, © =1, ---,n;k 1)

r®

Tk

2D = £,© 4
. Qi

This effects a new set of residuals 7" with ith residual equal to 0. Select
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the residual of maximum magnitude and similarly apply the same scheme
as above to obtain z®, This process is repeated again and again so as
ultimately to reduce all residuals to as close to 0 as possible.

It is sometimes possible to speed up convergence by picking residuals
not necessarily of maximum magnitude. In fact, by varying several of
the variables at one time it may be possible to speed up convergence con-
siderably. However, it would be very difficult to write a code including
many such variations and tricks.

Note. In the following sections it is often convenient to introduce a
measure or meiric different from the usual one in order to cut down on the
amount of computation required.

Approximations. Let A be a symmetric positive definite matrix, then
the length of a vector x with respect to the metric A is defined as |z|4 =
(x'Ax)*%, and any two vectors x and y are conjugate or A-orthogonal if
x’Ay = 0. These are extensions of the usual definitions of length and
orthogonality. The latter may be obtained from the new definitions by
taking A = I.

With respect to the usual metric, | Az — b|* = 0if and only if Az — b =-
0. This means that solving Az = b is equivalent to finding an z such that
| Az — b|* is minimized, since it is known that 0 is its minimum value.
Likewise with respect to the generalized metric B, |Ax — b|p? = 0 if
and only if Az — b = 0 since B must be positive definite.

Now let

9 f@) = |4z — b|s*
and consider the family of hyperellipsoids
(10) J@) =k,

where k may take on any constant value. Then the solution of the system
Az = b is the common center of the family of ellipsoids eq. (10). The
game then is to construct a set of approximations 2@, z™ ... which get
us to or close to this center. The more rapidly this happens the less
computation is involved.

Gradient Method. Start with a guess #‘? as an initial approximation
to the solution of Az = b. The ellipsoid of the family (10) obtained by
setting k = f(x?) passes through the point z® in n-dimensional space.
Then proceed in the direction of the gradient of —f(z) at = that is,
along the inner normal to the ellipsoid f(z) = f(z®). It is known that
f(x) decreases most rapidly along the latter direction and so it is natural
to proceed in this direction until one arrives at the minimum of f(z) along
this inner normal. This happens at that point 2> where the inner normal
becomes a tangent to one of the family of ellipsoids in eq. (10). Similarly,
proceed along the inner normal of the ellipsoid f(z) = f(z”) until the
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minimum of f(z) in this direction is reached. Continue in this way and
work in closer and closer to the common center of the family of ellipsoids
in (10).

The algebraic procedure for solving Az = b Wlth respect to the metrlc
B according to the geometric scheme described above is as follows:

(a) Compute C A’'BA

= A'Bb.

(b) Make an lmtla] guess (@,

(¢) Use the following algorithm to obtain the approximation z¢+V
from that of z?. (7) Calculate the vector z(” in the direction of the gradient
of f(x) at 2 1e,2® = Cz® — ¢. (ii) Caleulate

(z(i))/z(i)
0 = (z(i))lcz(i) )
(iii) Obtain 20T = z@ — .29 where the coefficient a; determines the
minimum value of f(z) in eq. (9) along the inner normal to f(z) = f(z®)
at 2@,

If A is a symmetric positive definite matrix, it is most convenient to
choose the metric B = A ™!, for then A replaces B and b replaces ¢ through—
out the above algorithm w1th a resulting simplification.

A considerable advantage of the gradient method is that there need
not be an accumulation of roundoff error since the vector 2 along the
gradient can be recalculated for each iteration. The function f(z) in eq.
(9) may be regarded as a measure of the closeness of an approximation
x to the true solution A™!b. For the gradient method it is true that
f@CY) < f(&?) for each 7 and that f(x‘) approaches 0 in the limit;
that is, z converges steadily toward the true solution A ~'b. However,
it is still true that the convergence may be slow or, in other words, it may
take many iterations to get close to the center of the ellipsoids. A number
of variations of the gradient method have been devised to try to speed up
the convergence.

Conjugate Gradient Method. First consider the case where A4 is
symmetric and positive definite. The object in the conjugate gradient
method as in the gradient method is to get to the common center of the
family of ellipsoids eq. (10). However, the route taken in the conjugate
gradient method is different from that of the gradient method and is so
modified as to get to the center of the family eq. (10) in but a finite num-
ber of steps, namely, at most » iterations.

The procedure in three dimensions will be described. The discussion in
higher dimensions follows along similar lines.

As before, make an initial guess © and proceed from z® along the
negative gradient of f(z) or what is the same along the inner normal of
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the three-dimensional ellipsoid f(z) = f(z@). Take as the next ap-
proximation the point #‘*, which is the midpoint of the resulting chord of
the ellipsoid f(z) = f(x?). Consider the diametral plane through z®
containing the locus of midpoints of the chords of f(x) = f(x(®), which
are parallel to the direction of the inner normal. The diametral plane so
formed cuts out a two-dimensional elliptic cross section from the ellipsoid
f(z) = f(z®). The common center of the ellipsoids (10) of interest lie
in this two-dimensional elliptic cross section, and the method is designed
so that all subsequent approximating points shall remain trapped in this
cross section. The diametral plane of f(z) = f(z(?) is likewise a diametral
plane of the interior ellipsoid f(z) = f(z?’) of the family (10) and cuts -
it in a two-dimensional elliptic cross section lying within the previous one
cut from f(z) = f(z®). Next proceed from z‘V along the gradient of
f(x) within the last elliptic cross section formed and take for z® the
midpoint of the chord so formed in the ellipse. In other words, instead of
proceeding from z" along the inner normal of the ellipsoid f(z) = f(z™*)
as in the gradient method, proceed along the inner normal of its cross
section made by the diametral plane through z®,

Again the locus of centers of chords parallel to the chord through =
and z® forms a diameter of the elliptic cross section of f(z) = f(zV),
which contains not only ® but also the center of the family (10). Next
proceed from z® along this diameter, choosing its center as the new and
final approximation *®. By barring roundoff error, x® yields the exact
solution to a linear system of three equations in three unknowns. If either
of the chords mentioned above passing through z®, 2™ happens to pass
also through the center of the family (10), the process will end in only one
or two iterations, respectively, instead of three. This will be indicated by
the residual r® = 0 or r® = 0, respectively.

Algorithms for a symmetric positive definite matriz of order n and for the
general n-dimensional case, respectively, will be given below, where p;
denotes a vector in the direction of 2 to z¢D,

(@) Pick 2@ ;thenlet p©@ = r©@ = b — 429,
|72

©) o = oy

(11) (c) G = @ +am(i), » |
@) rtD = — g Ap®,
(e) bi _ [r(i+1)|2

I

(f) p(i+1) = p@+D + bip(i),
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where the coefficient a; is selected to make z*? the appropriate distance
from 2 and b; to keep p©®*V in the appropriate direction as described
above.
The algorithm eqs. (11) may be applied to a matrix which is symmetric
and positive semidefinite as well as to a symmetric positive definite matrix.
In the case where A is a general matriz, the system Az = b is replaced
by the equivalent system

(12) A'Az = A%,

where A’A is a symmetric and positive semidefinite. The algorithm
(11) could thus be applied to eq. (12), but in order to avoid the roundoff
errors due to computing A’A4, it is better to use the following algorithm
which leads to theoretically equivalent results.

(@) Pick 2, then let 1@ = b — Az@, p©@ = A7,
[ A |2
(© 26D = 2O L ap®,
(@) ri+D = 1O _ g dp®,
lArr(i+1) |2
| A @2 '
() pU+D = AnGHD 4 pp®,

®) a;

(e) by =

The conjugate gradient method has numerous advantages in addition
to those already mentioned. One may start all over again with the last
approximation obtained as the initial approximation in order to nullify
the effects of accumulated roundoff errors. Also, each successive ap-
proximation is better than its predecessor. It is very important to note
that the given matrix is unchanged during the procedure so that the origi-
nal data are used again and again. This permits use of special properties
of the given matrix such as its particular form or sparseness. A number
of variations of this technique have been devised.

A great many of the most important works in the field are to be found
in the extensive bibliographies of works by Forsythe and Householder
(Refs. 8, 9, 12, and 13).

Computer Storage Requirements and Number of Operations.
Storage requirements for a given problem will vary in general with the
machine, with the programmer, and with the layout of the program.
Hence, in Table 5 the number of storage locations required for the program
of a given technique of matrix inversion or solution of a linear system shall
simply be denoted by the symbol w.
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A multiplication or a division will be identified simply as a multiplication.
Likewise an addition or a subtraction will be identified as an addition.
Since a multiplication requires from about 2 to 10 times as much time as
an addition on most computers, greater weight should be accordingly
apportioned to the number of multiplications. If the number of multiplica-
tions required for a given technique turns out to be, for example 2n® + 3n +
1; then 3n - 1 is negligible compared with 2n3 when n is sufficiently large.
One says the number of multiplications required in this case is of the order
2n3, and this is simply indicated by 2n3.

In the case of the indirect procedures such as the Seidel, relaxation, and
gradient methods the number of iterations necessary for a satisfactory
solution varies from problem to problem. In fact, the number of iterations
required depends upon the original system of equations, the choice of the
initial solution, and the accuracy stipulated beforehand. In these cases
storage requirements and the number of operations are given for one itera-
tion. For the conjugate gradient method these will be given totally for
all n iterations.

TABLE 5. CoOMPUTER STORAGE REQUIREMENTS AND NUMBER OF OPERATIONS
FOR MATRIX INVERSION AND LINEAR SysTEMS oF EQUATIONS

n = the order of matrix involved
w = the number of storage locations required for the computer program
of a given technique.

Method Storage Requirements Multiplications Additions
Matrix Inversion
Jordan-Gauss 2n? 4+ w n? nd
Morris escalator n? 4w 3n® in?
Gram-Schmidt 4w I8nd 1ans
Modified matrix n2 4+ 2n + w (a) one element n? (a) n?
(b) onerow or ®) 2n?
column 2n®
(¢) whole matrix 2n®  (c) 2n3
Linear Systems of Equations
Elimination n? 4+ n 4w ] - n3/3 n%/3
Seidel
(one iteration) n:4n+w n? n?
Relaxation
(one iteration) n:+4n+w n? n?
Gradient
(one iteration) n45m4+1+w 2n? 2n?
Conjugate gra- Symmetric positive definite
dient 2n% + 6n + 2 + w n? n?
(one iteration)  General case
m2-5m+24+w 3n? 3n?
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3. EIGENVALUES AND EIGENVECTORS Murray Mannos

General Remarks. The characteristic equation of a matrix together
with the corresponding eigenvalues (characteristic values) and eigenvectors
(characteristic vectors) plays a fundamental role in the theory of mechanical
or electrical vibrations. FExamples: the flutter vibrations of an airplane
wing, the elastic vibrations of a skyscraper or bridge, the buckling of an
elastic structure, the transient oscillations of an electric network, and
mechanical wave vibrations of molecules and atoms. Similar remarks
concerning direct and indirect methods, roundoff errors, etec., apply to
the finding of the eigenvalues and eigenvectors as to the inverting of a
matrix and the solution of a linear system of equations (see Refs. 8, 9,
and 12-14).

In practice, it usually happens that all the eigenvalues of a matrix are
distinct. This gives rise to a matrix A which can be diagonalized by a
similarity transformation. Under a similarity transformation the eigen-
values of A remain invariant. A symmetric matrix can be diagonalized
by an orthogonal transformation and similarly a Hermitian matrix can
be diagonalized by a unitary transformation. Hence, these types of mat-
rices are frequently singled out for special treatment by somewhat less
general methods than apply to the most general type of matrix. Matrices
which cannot be diagonalized by means of a similarity transformation
or whose eigenvalues are multiple or very closely spaced cause the proce-
dures to become more complex. Results concerning the bounds of eigen-
values are sometimes useful in helping to isolate them. In numerous cases
it suffices to find either the dominant or the least eigenvalue.

The elements of the matrix A will usually be complex elements but they
may be confined to be real numbers in some instances. The matrix 4
itself will always be of finite order.

Approximations for digital computer storage requirements and number of
operations for finding the eigenvalues and eigenvectors of a matrix cannot
be given as readily as in the cases of matrix inversion and the solution of
systems of linear equations. This is because the solution of an eigen-
value problem often consists of a number of major segments, such as an
iteration, the reduction of a matrix to a direct sum of triple diagonal
matrices whose sizes depend on the original matrix, the solution of complex
equations, or the evaluation of transcendental functions at specific places,
or the consideration of a sequence of Sturm functions. In the case of the
triple diagonal method, consideration of the computer aspects has been
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broken down in terms of the more important segments. Similarly, com-
puter information for one step of the reduction process for finding eigen-
values of a symmetric matrix by the Jacobi method is also given in Table
6 at the end of this section.

Characteristic Polynomial. The characteristic polynomial f(z) of a
matrix A of order n over the complex number system may be defined as

A—an —ae cre Tl
—a AN—a e —a
(13)  det O\ — A) =det| = o
—an1 —Qn2 crr N— Ann
=N 4Nty

=f).

The matrix A — A has elements which are polynomials in X\ with com-
plex coefficients. The characteristic polynomial may be found by the fol-
lowing methods:

1. The theory of determinants for such matrices is developed along the
same line as for those matrices whose elements are real or complex numbers.
Hence, the det W\ — A) can be expanded along any row or column to obtain
its characteristic polynomial. This method is not to be recommended for
n> 3. ‘

2. The coefficients ¢;, ¢z, « -, ¢, of the characteristic polynomial in eq.
(13) may be obtained from subdeterminants of the matrix A itself: ¢; =
— (a1 + @99 ++ -+ any,) is the negative of the sum of the diagonal ele-
ments of A or simply the negative of the trace of 4; ¢y is the sum of the
determinants of the 2 X 2 principal minors of A (i.e., the totality of minors
having two of their elements on the diagonal of A); c; is the negative of
the sum of the determinants of the 3 X 3 principal minors of 4, ---, ¢,
= (—~1)" det A. Likewise, this method is not to be recommended for
n > 3.

3. A finite tlerative scheme based on repeated premultiplication by the

matrix A yields the coefficients ¢y, ¢g, -, ¢, of (13) also. This is the so-
called Souriau-Frame algorithm.
Ay =4, ¢y = — trace 44, By, =4+ ¢I
A
Ak = ABk_l, Cp = — trace 7, _ Bk = Ak -|— CkI

(k=2’3, ’n)

4. Another way of finding the characteristic polynomial of a matrix A4 is
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to build it up one degree at a time by finding the characteristic polynomial
of the upper left-hand minors of A in increasing size.

Let M; denote the upper left-hand minor of A4 of order 7, I; the unit
matrix of order 4, and f;(\) the characteristic polynomial of ;.

Since -
(AI; — M) adj A\ — My) = f:(M,

it follows from a consideration of the last column that

[b1:(\) ] b)) T O T
ba:(N) ba:s(N) 0
bi—1,:(N) bi_1,:(\) 0
Lfic1(V) Lfima ) 4 L)
where '
[b1:(N) ]
| bai(N)
| b1V
Lfima (D)

is the 7th or last column of adj (A\I; — M,).

From the first ¢ — 1 rows of the expressions in eq. (14) the coeflicients
of the polynomials by;(\) (k = 1,2, -+, ¢ — 1) are determined by compar-
ing the various powers of A. The leading coefficient of each of the by;(\)
(k=1,2 ---, 4 —1) is determined by comparing coefficients of A*~'.
Then by using these known coefficients and by comparing coefficients of
A2, the second coefficients of each of the polynomials by;(\) (k = 1, 2,
.-+, % — 1) are obtained. By continuing in this way the b;; (k = 1,2, - - -,
1 — 1) are completely determined. If the known by; (k=1,2, ---,4 — 1)

~are now substituted in the resulting equation formed by setting the 4th or
last rows of eq. (14) equal, the polynomial f;(A) is determined.

One first forms fi(\) = N — a;; and uses the above technique to find
fo(A) from f, (), ete., until finally f(A) = f,(\) is obtained from f,_;(A\).

5. The method of finite tlerations may be used to obtain a polynomial
equation from which some of the eigenvalues of a matrix A may be obtained.
Let x > 0 be an arbitrary vector and form Az. If z and Az are linearly
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independent, form A%z. If z, Az, and A% are linearly independent, form
A®r, ete.  Continue in this way until one ultimately comes to a sequence z,
Az, A%, ---, APz which is linearly dependent. This must happen for
k = n, since at most n vectors are linearly independent. That is,

(15) (A* + ;AP 4 AR 2 .t Dz = 0.
TForm the corresponding polynomial
(16) Pr\) = N 4 e P b o\ 2 g

The polynomial Pr(\) of eq. (16) is a factor of the minimum polynomial
m(N) of A, which will be defined explicitly in the subsection on eigenvalues
and eigenvectors. If k = m where m is the degree of m()), then P,())
coincides with the minimum polynomial m(A). Finally if k¥ = n, then
P(\), the minimum polynomial m()\), and the characteristic polynomial
f\) all coincide.

The coefficients ¢, ¢, - -, ¢ are obtained from eq. (15) by forming a
set of linear equations resulting from a comparison of components.

6. The necessity of testing for linear dependence and for solving a sys-
tem of linear equations are disadvantages of the method of finite iteration.
However, the polynomial eq. (16) may be obtained while avoiding these
disadvantages by the so-called method of minimized iterations due to
Lanczos (Ref. 47).

Lanczos employs a finite algorithm involving the sequences of poly-
nomials:

Py(\) =1
Pi(\) = (N — ag)Po(N)
Po(\) = A\ — a)) P1(N) — boPo(N)

...................

...................

and the vectors given by the equations:

(17) x;— = Pi_1(A)x, Yi—1 = Pi_1(A")yo,
where
Y1 Am;_y Y1
(18) Qi1 = — big = ————
Y i—1%i—1 Yi2¥i_2

and zg 5% 0, yo # 0 are not orthogonal but otherwise arbitrary vectors.
The algorithm proceeds to calculate the vectors z;_; and y;_; until one
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of them becomes zero and the process terminates. From ¢ and y, one gets
ap from the left-hand equation of (18) by setting ¢ = 1. This determines
the polynomial P;(A) and in turn one gets the vectors z; and y; from eq.
(17) by setting ¢« = 2. From a; and y; one gets the coefficients a; and by
from (18) by setting ¢ = 2. This in turn determines P,(\) from which one
determines the vectors z; and y, by the use of eq. (17) with « = 3. Con-
tinuing in this manner ultimately shows that either the vector x; = 0 or
yr = 0 for some k. When this occurs the polynomial P(\), whose coeffi-
cients are now determined, is singled out. The polynomial P;(\) as before
is a factor of the minimum polynomial m(\) and coincides with m()) if
k = m, and with the characteristic polynomial f(A) if k = n.

Determination of Eigenvalues and Eigenvectors. f(\) = 0 is called
the characteristic equation of the matrix A and the n roots of this equation
are called the eigenvalues of the matrix A. From eq. (13) it follows that if
\ is an eigenvalue of A, then det (Al — A) = f(A\) = 0 so that the system
of linear equations Az = Mz

has a nontrivial solution x # 0, and any such solution x 5 0 is called an
eigenvector of the matrix A.

Once the coefficients of the characteristic polynomial have been deter-
mined, the characteristic equation can be solved by Graeffe’s, Bernoulli’s,
or any other known method for solving a polynomial equation to obtain
the eigenvalues of A. If n is fairly high, a large amount of precision in the
calculations must be exercised or roundoff error may easily invalidate the
results. '

Apart from multiplicity it is possible to find the eigenvalues of A by
considering a polynomial equation of lower degree than n. In this connec-
tion the minimum polynomial of the matrix A will be defined below. By
the well-known Cayley-Hamilton theorem it follows that f(4) = 0. In
general, however, A satisfies polynomial equations of lower degree than
n = deg f(A\). One denotes by m()\) that polynomial of lowest degree with
leading coefficient 1 such that m(A4) = 0. This polynomial is unique.
Furthermore, the minimum polynomial m(A\) divides the characteristic
polynomial f(\), and each of the eigenvalues of 4 is a root of m(\) = 0.
The multiplicity of such a root A of m(\) = 0 is less than or equal to the
multiplicity of A as a root of f(A\) = 0. Hence, if a certain procedure leads
to the construction of the minimum polynomial of A, it may be sufficient
to obtain the necessary information concerning the eigenvalues of A from
m(\), which may be of considerably lower degree than the characteristic
polynomial of A and so easier to work with. If one denotes by g(A) the
greatest common divisor of the polynomial elements of adj (A\] — A) it
may be shown that
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o)
A) = .
™M =00

Direct Methods

Apart from roundoff errors, the procedures described under the heading
of direct methods terminate in a finite number of steps with exact results.

The Escalator Method. If the eigenvalues of a symmetric matrix
A; of order 7 are known and distinet and the eigenvectors are also known,
the symmetric matrix

A; e ]

Ay = [ ,
Qi1 Aig1,i41

obtained by bordering 4 ; with an additional row and column also has eigen-
values and eigenvectors which can be found in terms of the eigenvalues and
eigenvectors of A;. Furthermore, the eigenvalues of A;,; are distinct and
interlace with those of A;.

Let \x (k =1, 2, - -+, 7) denote the eigenvalues of A;, and u; denote the
eigenvectors of A;. Then the eigenvalues of 4;,, are obtained by solving
the equation

L (@ ggug)?
L = Z ( +1 L)

B Gy
B=1 B — Mg

for the 7 + 1 values of u which satisfy this equation.
The eigenvector vy (k =1, 2, --+, ¢+ 1) of A;;; corresponding to uy
(k=1,2, ---,7+ 1) may be given by
v = (Ul — A Waiyy, 1), k=12 ---,741,
where U = (uy, us, - -+, us),
A1
A2

A

and Uyl — A)~'U’a;4, give the first ¢ components of vy.
Starting with the matrix (a;;), which has an eigenvalue of a;; and an
eigenvector 1, yields the eigenvalues and eigenvectors of the matrix

[au 012}
dg1 Qg2
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and continuing step by step.finally yields the eigenvalues and eigenvectors
of the matrix A itself. It should be observed that it is necessary to calcu-
late the eigenvalues and eigenvectors of each of the submatrices 4; (¢ = 2, 3,
-++,n — 1) as well as of the matrix A itself.

Triple Diagonal Method. Let A be a real symmetric matrix. The
method consists of first reducing the matrix A to a triple diagonal form by
means of a specially formed orthogonal transformation to be described be-
low. Then the eigenvalues of the resulting matrix S, which are the same
as those of A, are obtained with the aid of a Sturm sequence of functions
consisting of the determinants of the first principal minors or upper left-
hand corner minors of the matrix A\I — S. Then also the eigenvectors of S
associated with an eigenvalue X are obtained directly from the solution of
the homogeneous equations (Al — S)x = 0 because of their exceedingly
simple form. From the eigenvectors of S, one then constructs the eigen-
vectors of A itself.

1. In the triple diagonal form of a matrix each element not on the main
diagonal, the diagonal just above it, or the diagonal just below it is 0. To
obtain this form one attempts by appropriate orthogonal transformations
to reduce to 0 all elements of the first row beyond the second column and
likewise all elements of the first column beyond the second row. If all
these elements are already 0, no manipulation is required. If not, one next
looks at the element a;5. If a;o = 0 and a,; is the first nonzero element of
the first row following a9, interchange the second and jth columns and do
likewise with the second and jth rows. Thus the new element in the first
row second column is nonzero. If a;s # 0 to begin with, look at the ele-
ment a;3. If a;3 = 0, make an exchange similar to the one above so as to
bring a nonzero element into its position. If a;3 # 0, postmultiply A by
the orthogonal matrix Re5 and premultiply A by Ro3™ = R’s3, where

1 0 000 .- 0]
0 c — 00 0
0 s 00 0
Uss 0
(19) Rys=10 0 10 0| =
0 In—3
00 0 01 0
0 0 000 --- 1l

21—%
and c=[1+(ﬁ>] ; s=<fl—1—§>c.
a2 a2

This amounts to a rotation in the zyxs-plane, and ¢, s are the cosine and



NUMERICAL ANALYSIS 14-35

sine, respectively, of appropriate angles for making the element a’;3 of the
matrix Res™! ARs3 = (a's;) equal to 0 and hence also making a’s; = 0.
Also @’y has larger magnitude than a,5, and so a’y» % 0 also. Furthermore,
ayy=ay;and @'y =@y (¢, =4, .-+, n). If a/14 # 0, one may inter-
change the third and fourth columns and the third and fourth rows of
(a’1;) and apply the same type of transformation as before, and give rise
to an additional O in the first row and column of the newly formed matrix.
If a’y4 = 0, one looks at a’15, ete. By continuing in this fashion one forms
a new matrix whose first row and first column, except possibly for the first
two elements in each case, consist of zeros.

2. The same scheme can next be applied to the resulting submatrix of
order n — 1 in the lower right-hand corner. Here instead of R.3 one uses
R34 where

1 0 0
(20) R34 =10 Uy O
00 I, 4

to reduce all elements in first row and column of the (n—1)-st order sub-

matrix to zero except possibly for the first two elements. No elements

in the first row or column of the nth order matrix are affected by this.
Continue in this way and, if necessary, finally use

.
Ry 1=
0 Un—l,n

to effeet the final reduction to the following triple diagonal form.

fag by 0 0 O - - . 0 W
by as by 0 O 0
|10 by ag b3 O - - . 0
S=(0 0 b3 a4 by 0

0 0 0 O byug Gng by
k0 0 0 0 0 0O bo_1 a,
It follows that
21) S =T'AT,

where T consists of a finite product of orthogonal matrices of the type eqgs.
(19), (20), ete., and also of the type obtained from interchanging two col-
umns of the identity matrix.
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3. If any b; = 0, the eigenvalues and eigenvectors of S can be obtained
by a consideration of the eigenvalues and eigenvectors of each of the two
individual submatrices thus formed: one above and to the left of the van-
ishing b;, and the other to the right and below, and both of lower order than
S. Turther, such subdivisions or simplifications are possible as several
additional b’s may vanish. It will suffice then to treat the case b; = 0
=12, ---,n —1).

4. Let

Po(d) = 1
@) PN =\—a
PiA) = (N — a)Pi—1(N\) — V%1 Pis(N) (=23, -+, n).

By expanding the determinant of the first principal minor of A — S, whose
order is 7, in terms of the ¢th row and ¢th column, one obtains the last line
of eq. (22).

Iftb; 0@ =1, 2, ---,n — 1), the polynomials P,(\) = det|AI — S|,
P,_i\), -+, Pi(\), Po(A) = 1 form a Sturm sequence. This means that
the eigenvalues of S are distinct and may be isolated. Suppose that ¢ < d
are two real numbers which are not roots of P,(A). Then the number of
variations in sign of P,(c), Pn_;(¢), -+, Pi(c), 1 minus the number of
variations in sign of P,(d), Pn_i(d), - - -, P1(d), 1 yields the exact number
of eigenvalues of A between ¢ and d.

5. Once an eigenvalue A is determined, the homogeneous equations
(A — 8)x = 0 can be solved to obtain the associated eigenvalue z. The
equations when written out have the form:

2y = 1/bi(x — a))z
w3 = 1/bo[(\ — ag)xa — byxy]

..........................

0= ()\ - an)xn — by_1%p 1.

It follows from eqs. (23) that if x; is taken as an arbitrary nonzero real
number that x5, 23, - - -, 2, can be obtained in turn. The last equation of
(22) may be used as a check. When this has been done for each of the X’s
and one has all the eigenvectors of S, one must turn attention to finding
the eigenvectors of 4. '
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6. Sz = Az by virtue of eq. (21) implies (7"AT)z = Ax or A(Tx) =
A(Tx). Hence Tz, where z is an eigenvector of S associated with A, is the
eigenvector of A associated with the eigenvalue A.

Adjoint A — 4 and Eigenvectors. Here one assumes that the
eigenvalues \; (¢ =1, 2, ---, n), not necessarily distinet, have already
been found. The adj (A — A), its derivative, or perhaps one of its higher
derivatives when evaluated at A = \; present fertile territory for finding
the eigenvectors associated with A;.

The adj (Al — A) is a matrix whose elements are polynomials in A but
may also be viewed as a polynomial in A with matrix coefficients. If one
writes

FQA\) =adj . — A) = FA" L+ FA" 2 oo P, 4,

from
FOYMN — A) = fQ) = IN* + ¢y NV 4o o e, ]
one may determine the matrix coefficients Fy, Fy, - - -, F,,_; by expanding
and comparing coefficients of A. These are
Fo=1
Fi = FoA + ¢

F2 = FlA. +021

...........

Fu_1=F, 24+ cu 4l

If A; is a simple root of f(A) = 0, then F()\,;) is of rank 1, and a nonzero
column of F(A;) is an eigenvector of A associated with A;. There exists in
this case only one linearly independent eigenvector of A associated with A;.
If \; is a root of f(A) = O of multiplicity 2, there can exist two linearly in-
dependent eigenvectors of A associated with A;. But this need not be the
case, as there may exist only one linearly independent eigenvector asso-
ciated with A;. In the latter case F(\;) again is of rank 1 and any nonzero
column of F()\;) is an eigenvector associated with A;. On the other hand, if
there exist two linearly independent eigenvectors associated with A;, F()\;)
turns out to be the zero matrix. But F’()\;), the derivative of F(A) at ), is
of rank 2 and any two linearly independent columns of F’(A;) are such
eigenvectors associated with A;. Likewise, if A; is a triple root of f(A) = 0,
there can be three linearly independent eigenvectors associated with A;, but
here again this need not be the case. There may be only two linearly inde-
pendent eigenvectors or even only one. Again if only one linearly inde-
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pendent eigenvector is associated with A; any nonzero column of F()\;),
which has rank 1, is the desired eigenvector associated with A;. If there are
two linearly independent eigenvectors associated with A;, F'(A;) = 0 and
F'(\;) is of rank 2, and any two linearly independent columns yield the
desired eigenvectors. Lastly, if there are three linearly independent eigen-
vectors, '(\;) = F'(\;) = 0. But F”/(\;) is of rank 3, and any three linearly
independent columns of F"'()\;) are the desired eigenvectors associated with
X;. This procedure can be extended all the way to a root of f(A) = 0 having
multiplicity n. ’

Indirect Methods

Here the number of arithmetic operations necessary to arrive at exact
answers is infinite. The procedures are iterative and the eigenvalues and
eigenvectors of a matrix A are found without explicitly calculating the
characteristic polynomial of A.

Iterative Procedures for Hermitian Matrices. It is easier to handle
the case of a Hermitian matrix since it has real eigenvalues; eigenvectors
associated with distinct eigenvalues are mutually orthogonal; and, because
it can be diagonalized, the multiplicity of each eigenvalue A equals the
number of linearly independent eigenvectors associated with A.

Assume, for the time being, that the eigenvalues of a given Hermitian
matrix A are distinct. Also all the eigenvalues of A + wl, which is also
Hermitian, can be made positive by picking u sufficiently large so that there
is no restriction in assuming that the matrix A has a single dominant eigen-
value, i.e., an eigenvalue whose absolute value is greater than that of any
other eigenvalue of A. One first concentrates attention upon a method of
finding the dominant eigenvalue and its associated cigenvector. Several
methods are then available for finding the remaining eigenvalues of A.

The procedure starts with an initial vector zo and by repeated premulti-
plication of A builds up the sequence of vectors

(24) ap = Axp_y = APz  (p=1,2, ---).

In the nonexceptional case for p sufficiently large, the direction of the
vector x, will approach the direction of the eigenvector u; associated with
the dominant eigenvalue Aq. In the exceptional cases, x, will approach
either some u; associated with the eigenvalue \; (¢ = 2, ---, n) or else 0.
The latter rarely happens, but at any rate, an xy can be easily picked so
that the former case will apply. Again if p is sufficiently large, the ratio
of the ith component (z = 1, 2, -+, n) of x4 to that of z, can be made
‘arbitrarily close to the dominant eigenvalue. The closeness with which
these ratios agree may be regarded as a measure of the accuracy of the
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approximation to A;. An error made during the course of the computation
of , will not lead to an erroneous result since subsequent multiplication
by A will pull the computation back into line.

One may alternatively calculate A\; by means of a ratio of numbers as
defined below. Let

ap =gz, (=12, --);
then
ap+1

A = lim
P ap

If next one desires to find the minimum eigenvalue A, of A together with
its associated eigenvector, one may consider the matrix ¢/ — A where
¢ > M. The matrix ¢/ — A is Hermitian, and the same techniques may
be applied to it to find its maximum eigenvalue and its associated eigen-
vector. To get the minimum eigenvalue A, of A, one simply changes the
sign of the maximum eigenvalue of ¢ — A and adds ¢. The eigenvector
associated with the maximum eigenvalue of ¢/ — A is also the eigenvector
associated with the minimum eigenvalue A,, of A.

After A\; and u; have been calculated, the determination of the remain-
ing n — 1 eigenvalues and their associated eigenvectors of the nth order
matrix A may be done in terms of a matrix whose order is n — 1 instead
of n. If the normalized form of u, is denoted by w;*, i.e., u* = u;/|u],
from the vector u;* a unitary matrix U may be constructed so that

- MO
UAU= ’
0 A

where A; is a Hermitian matrix of order n — 1 whose eigenvalues Ag, A3,
-+ +, Ay are the n — 1 remaining unknown eigenvalues of A. The dominant
eigenvalue \; of A; and its associated eigenvector v, can be found as pre-
viously. The eigenvector us* associated with the eigenvalue A, of A is the
vector U (,f;). The following construction of the unitary matrix U is due
to Ieller and Forsythe. One writes u;* as follows

ul* = (g))

where a is a complex number and z is an n — 1 dimensional vector with
complex components. Then

a —%
o)
2 I, — kez'

where k = (1 — a)/(1 — aa).
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Next one replaces A; by the matrix
b )
0 A,
where 4, is a Hermitian matrix of order n — 2 having eigenvalues Az, - - -,
A», and then one repeats the previous step. This is continued until all
eigenvalues and eigenvectors of A are obtained.
Another way to find the eigenvalues Ay, :--, A, and their associated

eigenvectors, once A\; and u;* are known, is to form the new Hermitian
matrix

(25) . Al =A — 7\1u1*u_*'1

of order n also. The eigenvalues of A; are 0, A, -+, \,. The known eigen-
vector u;* is associated with the eigenvalue 0 of A;; while the unknown
eigenvector u;* is associated with the eigenvalue A\; (¢ = 2, - -+, n) of 4; as

well as of A. Thus the dominant eigenvalue A\, of A; and its associated
eigenvector ug* can be found as before by forming powers of A; instead of
powers of A as in eq. (24). .

Next one forms the Hermitian matrix

A2 = Al — )\2“2*1!*,2

of order n which has eigenvalues 0, 0, A3, - - -, A, and the unknown u;* is
associated with the \; (¢ = 3, -+, n) of A, as well as of A. Thus one ob-
tains A\; and its associated eigenvector uz*. Again one continues in this
fashion until all eigenvalues of A and their associated eigenvectors are
found. }

Multiple Roots. So far the possibility of multiple roots has not been
considered. Suppose, as before, one starts with z and builds up sequence
(24), one obtains as before an eigenvector associated with A;. A distinet
starting vector yo may be selected to build up a new sequence which will
again lead to the eigenvalue ;. But it may happen that yy leads to an
eigenvector which is linearly independent of the one to which z leads. In
this case A; is a multiple eigenvalue. If y,, as in the case of distinct eigen-
values, leads only to an eigenvector which is linearly dependent or simply
a multiple of the eigenvector to which z, leads, then A; is a simple eigen-
value. If x¢ and yo lead to linearly independent eigenvectors, and a third
arbitrary vector zo leads to an eigenvector which is linearly dependent upon
the first two eigenvectors, A; is an eigenvalue of multiplicity 2; whereas,
if 2y leads to an eigenvector linearly independent of the first two calcu-
lated eigenvectors, \; is at least of multiplicity 3. One can continue this
process for eigenvalues of higher multiplicity also.
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Let A; be a root of multiplicity 2. Then in the two-dimensional vector
space generated by the two linearly independent eigenvectors obtained one
may select u;*, up*, which are orthogonal and of unit length, and which
are eigenvectors associated with A;. By starting with %, * and us* one may
similarly, as before, build up a unitary matrix U such that

MM 000
UT'AU=(0 Az 0 |
0 0 A,

where A, is a Hermitian matrix of order n — 2 containing the remaining
eigenvalues A3, - -+, A, of A. Similarly, one proceeds in the case of multi-
ple eigenvalues, as outlined before.

A number of additional variations for obtaining the eigenvalues and ei-
genvectors of A is possible.

Iterative Process for General Type Matrices. If the matrix A can
be diagonalized, the method of successively premultiplying by A applies,
with some small appropriate modifications, to this case as well as to the
case of the Hermitian matrix. No longer are the eigenvalues of A neces-
sarily real. There may be several distinct dominant eigenvalues. The
eigenvectors of A can no longer be assumed mutually orthogonal. In order
to get around this situation, one introduces the concept of row eigenvectors
as well as column eigenvectors. Associated with each eigenvalue \; of 4
is the row eigenvector u¥, where 4”4 = A\u®, and the column eigenvec-
tor u;, where Au; = Au; (€ = 1,2, ---, n). In this case

uPu; = 8,

where
(Sij = O, ’l # j,
8 = 1, 1 = J.
Here 4 and u; ({ = 1, 2, -+-, n) need not be unit vectors but only

wu; =16 =1,2, -+, n).

One again starts with an arbitrary initial vector zo and forms the sequence
zp of eq. 24. A unique dominant eigenvalue and its associated eigenvector
are found exactly as before. Whereas, in the case of a Hermitian matrix
one forms the matrix A; as in eq. (25) in order to study the remaining eigen-
values and their associated eigenvectors, one now forms the matrix

Al =A — )\lu(l)ul.

Finding the eigenvalues in the case where several eigenvalues are dom-
inant is more complicated, as these are not computed as a simple ratio but
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rather as described below. Suppose that xy,, ®ap, - -+, Zkp are k linearly
independent vectors obtained from the sequence (24). For p sufficiently
large, these are arbitrarily close to the actual eigenvectors. It is desired
to find the eigenvalues Ay, Ag, - -+, A; associated with these. Take z as an
arbitrary vector and form

Qip = 2'%ip t=12 ---, k),
then
[ 1 A1p Q2p ccc Qpp
N Qrpg1 Q2p41 cct Oppya
) .
det| N aipye Gapi2 0 Gppye |=0

N Qipak Gopik ct Qhpdk

has k& roots which are close approximations to the eigenvalues Ay, A, <« «, Ag.

The great majority of matrices appearing in applications have distinct
eigenvalues and so can be'diagonalized. Therefore, the method of iterat-
ing by premultiplication of a given matrix is applicable. In the rare case
in which A has a root of multiplicity » and whose associated eigenvectors
number less than the full complement of r, it is not possible to diagonalize
A. Nevertheless, even in this case, it is still possible to use this iteration
scheme to find the dominant eigenvalue and the associated eigenvector of
matrix A having but a single dominant eigenvalue. One must, however,
consider the linear dependence of a finite number of successive z,’s in
sequence (24) for p sufficiently large to obtain the dominant eigenvalue
M. The associated eigenvector may be obtained as a linear combination
of a finite number of the x,’s whose components contain powers of A;.

Jacobi Method. The technique applies to Hermitian and so to real
symmetric matrices too. The method hinges on the fact that a 2 X 2
Hermitian matrix

a1y ae™

H='[ iy ], a>0
ae (027

can be reduced to diagonal form D by a unitary transformation U~1HU
= D, where
26) - [e’w 2cosf —e¥'%ging ]

e"¥28ing e W2 cos
and 6 is an angle in the first quadrant which satisfies tan 26 = 2a/(a;; —ass).
If ¢ = 0, i.e., H is real symmetric, the matrix (26) reduces to the familiar
form
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[cos § —sin 0]
U=| . )
sin 6 cos @

which corresponds to a rotation in the plane.
If the nth order Hermitian matrix A = (a;;) is written in the form

A = - ’
A"y Ay
then the unitary matrix

[0 2]

where U is the matrix (26) and transforms A into a matrix B = (b;;), where
bie = by; = 0; furthermore, the sum of the squares of the diagonal ele-
ments of B exceeds the corresponding sum of A by the positive quantity
2a®. If it is desired to transform A into a matrix B such that b;; = bj;
= 0, the elements of the matrix U in eq. (26) must be positioned in the
7th and jth rows as well as in the sth and jth columns of U in eq. (27).

One might hope that after applying the product of a finite number of
the above unitary transformations one might reduce the matrix 4 to di-
agonal form, in which case the sum of the squares of the diagonal elements
will have the maximum possible value. Unfortunately, this is not true, as
some of the elements, which have previously been reduced to zero, will not
remain so while some additional elements are likewise being reduced to
Z€10.

The procedure is to reduce to zero a pair of off-diagonal elements of
greatest modulus. It is the infinite product of all these transformations
which will reduce A to diagonal form A and whose diagonal contains the
eigenvalues of A. The infinite product of unitary matrices of the type
(27) converges to a matrix whose columns are the eigenvectors of the matrix
A.

Eigenvalues of Special Matrices

The types of eigenvalues to which certain important classes of matrices
give rise are worth noting.

Mairiz A Every Eigenvalue N\; of A
(a) Real and symmetric (a) Real
() Real, symmetric, and () Real and positive
positive definite
(¢) Real, symmetric and (¢) Real and non-negative

positive semidefinite
(d) Orthogonal (@) [\ = lforeverys
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In (a), (b), and (c), if a real symmetric matrix is replaced by a Hermitian
matrix, the conclusions still remain valid. In (d) if A is unitary, the con-
clusion drawn there still holds.

Some additional properties concerning domlna,nt roots of important
classes are listed below:

(1) If A is real and symmetric, the maximum eigenvalue A,y is given by

Az
Amax = mmax
220 T'x

’

and the minimum eigenvalue A, is given by

2'Ax
Amin = min
220 T'T

(ii) If A is a real p051t1ve matrix (i.e., A has positive elements), Aax is a
real number.

Bounds on Eigenvalues

It is often a helpful guide to establish bounds for the eigenvalues of a
matrix at the outset, as this may influence the procedure. It is extremely
advantageous when this leads to the isolation of some of the eigenvalues
of a given matrix. Some of the criteria for determining bounds are easily
applied. A number of such results will be stated and in some cases addi-
tional information will be given concerning the associated eigenvectors.
First, the case of matrices with complex elements will be treated, and sub-
sequently this will be specialized to matrices with positive and also mat-
rices with non-negative elements. However, when results on bounds apply
to a large class of matrices, the bounds cannot be expected to be as sharp
as those applying to a smaller more specialized class of matrices. The fol-
lowing cases are of interest.

1. Let A be an arbitrary matriz of order » with complex elements. Then

A < nM

where A is any eigenvalue of A, and M is the maximum of the moduli of the
elements a;; (7,7 = 1, -- -, n) of A. This result is due to Hirsch in 1902.

2. Let

n

Ri= 2 laj| and  Tj= 3 |agl.
j=1 1=1
Alsolet R=max R; (i =1, ---,n)and T =max T; (=1, ---, n).
Then
Al £ min (R, T).
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A number of variations on these two bounds (1) and (2) exists. Some
of these variations are a bit sharper, but these are simple to apply and will
be sufficient for the purposes at hand.

3. Let P; denote the sum of the moduli of the off-diagonal elements of
the ith row of the matrix A and @; the sum of the moduli of the off-diagonal
elements of the jth column of A. That is,

n n
Pi= 2 laz| and  Q;= 3 |ayl.
= =

Then a result due to Levy and Hadamard states that each eigenvalue of A
lies in at least one of the circles

(28) lz —au| £P;  (G=1,-,n)
and in at least one of the circles
lz—a;l =Q (G=1,---,n).

In other words, if one takes the diagonal element a;; and draws' a circle
with a;; as the center and P; ( = 1, -+, n) as radius, all the eigenvalues
of A will be trapped in these n circles. A similar remark applies to the n
circles with the Q; ( = 1, - -+, n) as radii. It is to be noted that an eigen-
value of A may be in several of the n circles.

4. An interesting offshoot of this result is the following: If one of the n
circles is isolated from the remaining n — 1 circles, that is, has no point in
common with the remaining n — 1 circles, exactly one eigenvalue of A4
will be found in the isolated circle. More generally Ger§gorin showed that
when m circles intersect in a connected region isolated from the remaining
n — m circles, the connected region thus formed contains exactly m eigen-
values of A.

5. The following results concerning the number of associated eigenvectors
is noteworthy. If an eigenvalue A of the matrix A lies in only one of n
circles (28), A has only one linearly independent eigenvector associated
with it. This result is due to Taussky (Ref. 15). Stein has shown that if
an eigenvalue M\ has associated with it m < » linearly independent eigen-
vectors, A lies in at least m of the circles (28).

6. Before passing to the case of positive and non-negative matrices, it is
worth noting a result of Frobenius which gives a connection between the
eigenvalues of a matrix with complex elements and a dominating matrix
with non-negative elements. Let B = (b;;) be a matrix with complex ele-
ments and A = (a;;) be a matrix with non-negative elements such that
|bij| £ a;; (4,5 =1, ---,n). Then the characteristic circle of A contains
the characteristic circle of B. (The characteristic circle of a matrix is the
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smallest circle about the origin containing the eigenvalues of the given
matrix.)

7. Turning attention next to real matrices with non-negative elements, one
can draw some additional and sharper conclusions. If A is a matrix whose
elements a;; = 0 (¢, 7 = 1, ---, n) then (a) A has a real eigenvalue Ay = 0
which is dominant (there may be other dominant eigenvalues), (b) A\; has
an associated eigenvector x = 0, i.e., all components of x are non-negative,
and (¢) Ag does not decrease when an element of A increases.

The above results are due to Herstein and Debreu, who paralleled for the
case of non-negative matrices the results of Frobenius given below.

8. These results grow sharper when one further restricts the matrix A
to be indecomposable. A non-negative matrix A is called indecomposable
if A cannot be transformed to a matrix of the form

[An Am]

0 Aso

by the same permutations of rows and columns where A;; and Ay, are
square submatrices of A.

If A is a non-negative indecomposable matrix, then (@) A has a real
simple eigenvalue Ay > 0 which is dominant; (b) A4 has an associated eigen-
vector x > 0, i.e., all the components of z are strictly positive; and (c) A\q
increases when an element of A increases. These important results were
first demonstrated by Frobenius nearly a half century ago.

9. If the matrix A is still further restricted so that all its elemenis are
posttive, that is, a;; > 0 (4, j = 1, - -+, n), then the statement (a) above
can be strengthened to include the fact that A4 is the only dominant eigen-

value of A.
10. Again, suppose A is a positive matrix and let

R; = Zaif (7’= 1:"')”))R=max {RlyR%"')Rn},
=t and r = min {Ry, R, - - -, Ru}.

Trobenius first noted that
: r=x =R

Also Ay = r = R if and only if all R; are equal; otherwise, the inequality
r<iN<R
holds. Suppose that not all the R; (Z = i, .-+, n) are equal and let
k = min a;;,

5 = max {Ri/R;},
R,’<R,'
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and

o=V —x/(B—x

so that k > 0, 8 < 1, and ¢ < 1. Ledermann improved the bounds on
Frobenius’ result as follows

1
T+K<\_/§— 1><)\d<R—K(1—\/E),
and Ostrowski further sharpened the bounds with the inequalities

T+K<l—1>§)\d§R—K(1—0’).
g

In fact, the right-hand side of Ostrowski’s inequalities applies to matrices
with complex elements when in the definitions of B and « one uses the
modulus of the elements. More recently, Brauer announced further im-
provement of the above bounds, stating that the best possible bounds have
been attained. That is, in order to get sharper bounds one would have to
restrict further the class of positive matrices.

11. Some specialized examples of non-negative matrices are the stochastic
mairices and the oscillation matrices. The eigenvalues of the former play
an important role in the theory of stochastic processes while the latter type
matrices are applicable in the theory of small oscillations of mechanical
systems.

The matrix A = (a;;) is called stochastic if a;; = 0 (¢,5 = 1, - - -, n) and if

n
Zai,'=1 =1, ---,n).
j=1

Ifa; >0 (@ =1, ---, n), the matrix 4 is called a positive stochastic .
matrix. All the eigenvalues of a stochastic matrix lie within or on the
boundary of the unit circle. Also A = 1 is a dominant eigenvalue of any
stochastic matrix. Previous results on non-negative and positive matrices
may be directly applied to stochastic matrices.

The matrix A of order = is said to be completely non-negative (completely
positive) if all minors of all orders from 1 to n of A are non-negative (positive).

If A is completely non-negative and there exists a positive integer k such
that A is completely positive, then A is said to be an oscillation matrix. A
non-negative matrix A will specialize to an oscillation matrix if and only if
det A % 0,a;:41 > 0and a;q1,: >0 =1, ---,n — 1). The eigenvalues
of an oscillation matrix have the interesting property that they are all
strictly positive and simple.

Tor an extensive bibliography on the bounds of eigenvalues, see Ref. 15.
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TABLE 6. COMPUTER SToRAGE REQUIREMENTS AND NUMBER OF OPERATIONS FOR
Finpine EIGENVALUES AND EIGENVECTORS

n = order of matrix involved
w, w’, w"” = program storage requirements

Storage  Multipli- Addi-
Method Requirements cations tions

Triple Diagonal

Triple diagonal form S n%/2 + n/2 +w 4n® 2l
Eigenvalues of 4 ¢
Eigenvectors of S 2n — 1+ w' 3n? 2n?
Eigenvectors of A 2n? + w'’ 2n3 n?
Total for eigenvalues

and eigenvectors ® P+ sn —14+w”" L8 $nd

Jacobi (Symmetric matrix)
Eigenvalues :
(one step of reduc-
tion) n4+4+w 4n 2n

@ In finding the eigenvalues of A, the number of operations depends on the stipulated
requirements for accuracy. If n is sufficiently large, the number of operations required
to find the eigenvalues, once the matrix is in triple diagonal form, is negligible compared
with the number of operations required to reduce the original matrix to triple diagonal
form.

® w’” is the sum of w, w’, w”, and the number of cell locations used in finding the eigen-
vectors of 4.

1173

4. DIGITAL TECHNIQUES IN STATISTICAL ANALYSIS
OF EXPERIMENTS Joseph M. Cameron

Introduction. In scientific experiments a variable is measured under
several different conditions with a view to assessing the effect of these con-
ditions on the variable under study. There may be factors present in the
measurement process which, if not balanced out or their effect reduced by
randomization or replication, may invalidate the estimates of the effects
the experiment seeks to measure. The branch of statistics called the design
of experiments is concerned with the construction of experimental arrange-
ments that permit the balancing out of such extraneous factors and at the
same time minimizing (for a given number of observations) the uncertain-
ties in the estimates of the effects under study.
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In most applications the analysis required is the usual least squares anal-
ysis for estimating the parameters postulated to represent the data. In a
designed experiment the normal equations that arise in the estimation of
the parameters take on a particularly simple form and the calculations
have been systematized and given the name analysis of variance. Example.
Consider a set of measurements z;, s, - -+, 2, all postulated to be estimates
of a single quantity. The least squares estimate for that quantity is, of
course, the average £ = Zx;/n. One can also compute from the data a
measure of the dispersion of the results about this average. Perhaps the

most common such measure is the standard deviation, V' S(x; — £)%/(n — 1).
In the analysis of variance one deals not with the standard deviation but
rather with its square, which is a quadratic form in the deviations divided
by the number of independent deviations, called the number of degrees of
freedom.

The analysis of variance in its general form is a technique for (a) com-
puting estimates of the parameters involved in the problem and (b) com-
puting the value of quadratic forms, called sums of squares, assignable to
certain groupings of the parameters, each sum of squares carrying with it a
certain number of degrees of freedom (the rank of the quadratic form).
Thus in the case of & averages each based on n measurements, the param-
eters to be estimated are the grand average and the (¢ — 1) independent
deviations of the individual averages about this grand average. Three
sums of squares are to be calculated: one for the grand average (with one
degree of freedom), one for the deviation of the individual averages about
the grand average [with (¢ — 1) degrees of freedom], and one for the devia-
tions of the observations about their own group averages [with k(n — 1)
degrees of freedom].

Several examples of the analysis of variance are presented to illustrate
the different techniques of computation that are available. The advantage
of one over another probably depends on the nature of the computing de-
vice used.

The availability of modern high-speed digital computers makes it feas-
ible to analyze experimental data involving a much greater number of
factors, each factor occurring at more levels than would otherwise be the
case. The types of calculations described above and in the succeeding
pages, because of their systematic nature, lend themselves particularly well
to treatment on automatic digital computers.

Analysis of Factorial Designs Using Hartley Method. An experi-
ment in which the effects of several factors on a variable are studied by
making measurements at all possible combinations of the several states or
levels for each of the factors is called a factorial experiment. FExample.
Four temperatures of heat treating can be combined with three time periods
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to give rise to twelve conditioning treatments for some alloy. This would
be a factorial design with two factors, one at four levels and the other at
three levels.

The most general method for the analysis of factorials was developed by
Hartley (Ref. 22). His method depends on three operators which he has
labeled 2, D, and ()2, defined as follows:

2; Sum overalllevelst = 1,2, -, T for each combination of the
other subscripts. »
D, Difference between 7' times the original values and the total in
‘the set Z; to which the original value contributed.
( )2 Sum of squares of items indicated in the parentheses.

Procedure. The use of this technique will be ¢llustrated for a two-factor
factorial having one factor at k levels and the other at n levels. Denote
by x;; the observation at the ith level of the first factor and jth level of the
second factor. Let z; denote the set of sums Z x;; = xj, there being n

such sums. In Table 7 the plan of the calculations is shown. Table 8
shows the analysis of variance table derived from the results of Table 7.

TaBLE 7. Pran or CancuraTtions Usine HartLey TrEcHNIQUE, Two-FacTor
Facrorial EXPERIMENT

A, A, - A
By n T21 Tr1
B, 212 229 Tro
Level of fac-
tor B
B, ZTin T2n Tin
Z; T 3, Tk, 22 | .
nri — T1, NTox — X2, =+ NTg1 — T, nr,y — ..
D; | nxie — x1, NTey — To, NTxe — xr, | Z:D; | nxe — x..
NTin — 1. NTan — T2, NTgn — Tk, nr.n — ..
D,'Ej kxl, — X.. kxk, — T,
knzy — ke, — nxa + 2, knzyy — kry, — nxg + o,
D,‘Dj
knzin — kxi. — nza + ., knxin — kg, — nz.a + .,

The estimates of the parameters are obtained by dividing the entries in
the sets =,2;, 2:D;, D;Z;, and D;D; by nk giving in that order the grand
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TABLE 8. ANALYSIS OF VARIANCE FOR Two-Facror Facroriar EXPERIMENT

No. of Sum of Degrees of Sum of Squares Ts
Items Squares Freedom Associated with:
(Z:Z))* 1 (Z:Z)%/nk 1 Grand average
(Z:D;)* n (Z:D))*/n(nk) n—1 Effect of different levels
of factor B
(D;Z)* k (D:Z)*/k(nk) E—1 Effect of different levels
of factor A

(D:D;)* nk (D:D;)?/(nk)? n—0DEk-1 Interaction: lack of con-
stancy between levels
of A as level of B is
varied

23 nk Total (for check)

average, differences among levels of factor B, differences among levels of
factor A, and the differences due to lack of constancy of the different
levels of factor A as the level of factor B is changed. This technique can
be extended to cover the case of three or more factors by using the basic
operations of Z, D, or ( )? and is adaptable to other designs as well (see
Ref. 22).

An alternate procedure necessary when the experiment is run in blocks
containing only a fraction of the total number of observations or when a
fractional replication design is used is based on the technique described in
Ref. 23, and is discussed below. Still another procedure is given in Ref. 16
based on the computation of individual degrees of freedom with orthogonal
polynomials tabled in Refs. 20 and 21.

Balanced Incomplete Blocks. When there are more objects or treat-
ments than can be compared under the same conditions, i.e., on a given
batch of material, in a given time period, or other factor which limits the
uniformity of conditions to a few tests, it is necessary to schedule the
measurements so that all comparisons of interest may be estimated from
the data. The class of designs constructed for such a case is called incom-
plete block designs, the block being the group of tests within which the
environmental or other factor is assumed not to change. The analysis of
these block designs will be illustrated for the case of the balanced incom-
plete block design (see Refs. 16-23).

Observations have index @y referring to B blocks with K units per block
and T treatments with R repetitions of each. The data are entered so
that the observations from the first block come first, followed by those
from the second block, etc.

Step I. Compute total sum of squares of original values, Zxp;2.
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Step II. Consider only indices b and k.

Number ( )? Applied to
Operatton  of Iiems Result Result Gives BK Times
Zk B Ty,
Dy, BK Ky — s,
ZoZp 1 z.. Correction factor
Dy B Bz, — z.. Unadjusted blocks sums
of squares

Step I1I. Now consider only indices ¢ and . The values of Dy, are now
rearranged into 7' groups with R values each so that the R values corre-
"sponding to the first treatment come in a group followed by a similar
grouping for each of the remaining treatments. Call these values d;, and
denote operations after rearrangement with asterisk. Z,*Dj results in

d;, = Kz;, — By
, KE-1DTR .
(Z.*Dy)° = —(TTT X sum of squares for treatments (adjusted),

where B; = sum of block totals for blocks containing treatment .

Analysts of Variance Sum of Squares Degrees of Freedom
Total Zaw? — x%../BK BK —1
Blocks (unadjusted) (DsZ1)?/BK B—-1

. (T — D(E,*Dp)?
Treatments (adjusted) K& — DTR 7-1
Error By subtraction BK—-—B~-T+1

Analysis of Factorials by Using Relations among the Indices
Associated with the Treatments. To illustrate the method assume
there are three factors 4, B, and C having levelsn + 1,7 + 1, and n + 1
respectively. Each observation is tagged with an index x;xs23, where z; =
0,1, ---,my2z3=0,1, -+, n,and 23 = 0, 1, + - -, n, where n is a prime.

For the main effect of A form the (n + 1) sums of values whose indices

satisfy
z; = 0 mod (n + 1)

z1 = 1 mod (n 4+ 1)

z; =nmod (n+ 1) ,
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Denote these sums by Ay, Az, - -+, Apqa. The sum of squares for the main
effect of A is given by

TA? (ZA4)?
(n+12 @m+1)3
Similar computations give the sum of squares for the main effects of B
and C.

For the two-factor interactions the sums of values whose indices satisfy
the equations below are computed.

1 + 2 = 0 mod (n + 1)

(degrees of freedom = n).

i

1+ 2o = nmod (n + 1)

x1 + nzs = 0 mod (n + 1)

21 + nxe = nmod (n + 1)

TFrom the (n + 1) sums corresponding to x; + axs = 0, 1, -+, n mod
(n + 1) are computed the sum of squares associated with the n degrees
of freedom for AB® and the AB interaction is given by the total of such
sums over all values of a. For the three-factor interaction one computes
the (n -+ 1)n? sums of values for which the indices satisfy

xl—l—ax2+ﬁx3=0, 1, "',and(n+1),

where ¢ = 1,2, -+, n,and 8 = 1, 2, ---, n. Each group of (n + 1)
sums give the sum of squares associated with the n degrees of freedom for
the effect AB*CP. Tor each group one computes:

2 (Sums)? (Grand total)?

Number of items in each sum  Total number of items.

The extension to higher order interactions is straightforward.

This technique is ideally adapted to analysis of variance of factorials
where block confounding occurs or to the analysis of fractional replication
of factorials. Ezample. A 3* design in blocks of 9 with ABD, ACD?
AB?C?, and BC2D? confounded with blocks is computed in the manner
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described to get the usual analysis except for the combination of the sums
of squares for the three-factor interactions which involve confounding with
blocks. For example the ABD interaction is given by the sum of squares
associated with AB2D, ABD?, and AB2D? each of which has two degrees
of freedom. The sum of squares associated with ABD is assigned to
blocks.

For fractional factorials (with or without block confounding) the analysis
is carried out as if it were a complete design with fewer factors by sup-
pressing one or more of the indices. The individual components, 4, ---,
B, ---, AB,AB?, ..., ABC, ABC?, ... are computed, and an identifica-
tion is made according to the identity relationships (and block confounding,
if any). (For further details see Ref. 23.)

Analysis of Variance for 2" Factorials. An example for a 22 experi-
ment will illustrate this procedure. Enter observations in the order desig-
nated.

Observed  First Sums and Second Sums and

Values  Differences, Dy Differences, Dy Dy2/2™ Will Give
(1) = z00 N +a D 4+a+b+ab Correc. for mean
a = To b+ ab a— 1) +ab—->b A

b=z a— () b+ab—(1)—a B

ab = z11 ab — b ab—b—a+ (1) AB

In general:

(a) Form a column of sums of the 2"~ pairs followed by 2"~! differences
between the first and second element of a pair.

(b) Repeat this operation on the column so formed until the nth such
column is formed.

(¢) Then square the entries in the nth column and divide by 2" to get
analysis of variance table in the order A, B, AB, C, AC, BC, ABC, ---.
The observations are entered so that their subscripts form an increasing
sequence when regarded as binary numbers; e.g., for n = 3 the observations
are in the order Zogo Zo01 To10 Zo11 Z100 101 L110 L111-

Analysis of Fractional Replication of 2" Factorials. Arrange the
(1/2¥)2" = 2° observations in the proper order for a 2° factorial (suppress-
ing the other indices) and carry out the analysis as above. Identify the
results of the analysis by using the identity relationships and the block
confounding in the manner shown in the following example.

ExampLE. 14 replication of 2° in blocks of 8.
Fundamental identity: I = ABEF = ACDF = BCDE.
Block confounding: CD.
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Block Treatment  Index e Identification
1 (1) 0000 00 Mean
1 af 0001 01 A=A
1 be 0010 10 B=3B
1 abef 001111 AB = AB + EF
2 cef 0100 11 cC=¢0C
2 ace 0101 10 AC = AC + DF
2 bef 0110 01 BC ='BC + DE
2 abe 0111 00 ABC = error
2 def 1000 11 D=D
2 ade 1001 10 AD = AD + CF
2 bdf 1010 01 BD = BD + CE
2 abd 1011 00 ABD = error
1 ed 1100 00 CD = CD + AF + BE + blocks
1 acdf 1101 01 ACD =F
1 bede 1110 10 BCD =E
1 abedef 1111 11 ABCD = AE + BF

@ Only the first four indices are used.

5. ORDINARY DIFFERENTIAL EQUATIONS Richard F. Clippinger

Definitions and Introduction. An ordinary differential equation of
nth order is a relation between an independent variable z, a dependent
variable y;, and derivatives of y; up to order n, (d"y;/dz™ = y,™):

F(IB, yl(x)) y,l(x)y T yl(n)(x)) = 0.

By the introduction of new variables, it is possible to obtain a system of n
equations of first order:

Gl(x; yl(x); y2(x), Y yn(x)y Z/,l(x), Ty 3/,7,,(13)) =0
GZ(xy yl(x)) Z/z(x), Y yn(x), yll(x)) Y yln(x)) =0

Ga(z, y1(®), y2(x): coy Yn(@), Ya(2), - ) y,n(x)) =0

which theoretically can usually be solved in the form:

y,l = fl(xa ?/1(.’1}), N yn(x))'

...........

?/,n = fn(x; yl(x): Yy ?/n(x)).
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With vector notation, this system takes the form:

(29) ¥'(@) = fz,y(@)),
where y is a vector whose components are y,(x), 2 = 1,2, ---, n, and f is
a vector whose components are f;(z, y1(z), -+ -, ya(2)), 7= 1,2, - -+, n.

Vector notation will be used throughout this section covering systems of
equations which can be put in this form. The reader who is not familiar
with vectors can take the case where y(z) is a single function of z and use
this section as a guide to the solution of one first order equation.

At the end of this section is a summary table of some useful numerical
methods for solving differential equations on a digital computer (see Table
11). Some important characteristics of each of these methods are listed.
The prospective user may employ this table as a quick guide in selecting
the most suitable method for the problem at hand.

Requirements for Solution. A solution of eq. (29) is a vector y(z)
which satisfies eq. (29). It necessarily possesses a first derivative.

The differential equations used by engineers nearly always possess solu-
tions which have continuous derivatives of many or all orders or indeed
are analytic (i.e., the Taylor series converges) except at isolated points.
They are said to be piecewise continuous and have piecewise continuous
derivatives. The isolated discontinuities are of practical importance since
engineer’s derivatives are such quantities as current, voltage, velocity, and
acceleration which he must limit to avoid damage to his equipment. Meth-
ods of solving differential equations that are awkward at discontinuities
are of restricted value to him.

Numerical Solution. The Taylor series for y(x) in the neighborhood
of some point zo: '

y(@) = y(@o) + ¥/ (o) (@ — o) + - -+ y™ (wo) (@ — wo)™/m! + - - -,

enables one to approximate y by an mth degree polynomial in z — x.
Most numerical methods of solving differential equations depend direcily or
indirectly on this fact.

Consider a set of points

Tig; = Z; + 1h, 1 =0, &1, £2, ---,

These points are equally spaced along the z-axis and the distance between
neighboring points is A, called the grid size.
Write the Taylor series of y, hy’, h%y"’, etc., at each of these points:

(30a) Yivi = Y(@oys) = y5 + thy's + - -+ WY /ml + Ry,
(B0D)  hy'iy; = hy's + ihPy + -+ TR /(m— 1D 4 Ry,
(B0c) hy"iy; = WY+ A T2 /(= 2)1 4 Ry,
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where R,,; is a generic notation for a remainder which contains A"+ as a
factor. Equations (30) can be used in an endless variety of ways to obtain
procedures for the numerical solutions of eq. (29).

Solutions for Known y;andy’;. y;and y; are known at several past
points (ie., 72 = 0, —1, —2, - -+, —I) and y;, is desired. Solve eqs. (30a)
and (30b) at ¢ = —1, .-+, —I for 2] of the quantities:

Ry;/2Y RBy; @ /81, - oo, KB CITN /2 4+ 1),

and substitute into eq. (30a) for y;4, and obtain a formula accurate to
terms of degree 21 + 2 in A. Thus we have Table 9.

TABLE 9. IEXTRAPOLATION FORMULAS

For-

mula I Yi4l Yi hy'; yi-1 ki w2 kY2 yi-s  hy'i-s Error
1 0 1 1 1 (Euler method) y@p2/2
2 1 1 —4 4 5 2 y@rt/8
3 2 1 —18 9 9 18 10 3 1Oy(® /720
4 3 1 -1z 16 —-36 72 64 48 A 4 1By® /70

First Order Method. Formula 1 of Table 9 is the simplest and best known
of all solution methods and is due to Euler. The value of y; 4, is

(31) Yig1 = Y; + hy'j,

then the value of ¥;,, is obtained from eq. (29). It can be shown that the
approximate solution obtained in this fashion converges to the exact solu-
tion as the grid size approaches zero, the error at a given point being propor-
tional to h. This is called a first order method. The principal attraction of
this method is its simplicity. Its principal disadvantage whether for hand
or electronic digital computation is that it requires a small grid size to ob-
tain a given accuracy.

Studying the Stability of the Method. The most illuminating test
of any method of solving differential equations (ordinary or partial) is to
perturb the solution and study the local properties of the perturbed solu-
tion. To illustrate, consider Euler’s method for solving a single eq. (29).
Suppose that a small error e is made at zo and that z; is the Euler solution
of eq. (29) with this error at x.

Let

= 2 = Y.

Then, since y; and z; each satisfy eq. (31), one finds, with the mean value
theorem, that

of
Nj41 =77j<1+ha/'($j,yj+9’nj)>, 0<o<L
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Consider now a small enough neighborhood of zy so that second order
effects may be neglected, i.e., that 9f/dy may be taken to be a constant d.
Then

n1 = ni(1 4 kd) = no(1 + hd)’ ' = €[(1 4+ hd)*hd(j + 1).
If attention is focused on a fixed point,
x =29+ G+ Dh,

and if A is allowed to approach zero, 5;4; approaches e exp (x — zg)d.
The error at x, due to the error e at xp, thus remains finite as the grid size
goes to zero, and the method is said to be locally stable. The error grows
with x if 3f/dy is positive; otherwise it decreases.

The same method shows that the other extrapolation formulas 2, 3, and
4 of Table 9 cannot by themselves be used to solve differential equations
because they are locally unstable, i.e., the error at « due to a given error
at xg becomes infinite as the grid size goes to zero.

Solutions for Known y; ;. If y;4, is obtained in some fashion, y'; 4
can be found from eq. (29). Using eq. (30) for hy';1, in addition to the
equations used to obtain Table 9 results in Table 10.

TABLE 10. EXTRAPOLATION IFORMULAS

For-
mula I Yiar  hy'in yj hy'i  yie Wi yi—2 hy'j—2 wij—3 hy'j—s  Error
5 0 1 3 1 * (Trapezoidal formula) — 3y /4
6 1 1 %— 0 4 1 1 (Simpson’s rule) —18y(® /90
7 2 1 '1"21" _% f_z 'f';' %17' 1 'fxT —120’172/(7)

Heun’s second order method has its basis in formula 5, Table 10, the
trapezoidal formula. It is a considerable improvement on Euler’s method
since a much larger grid size may be used. It is just as stable as Euler’s
method, requires no past history, and calls for substitution in eq. (29) only
once per point.

One uses Euler’s formula for a first value of y;44, eq. (29) to find y';44
and then Heun's formula for a better value of y;,,. It is not necessary to
recompute y';41. The process may be iterated if desired.

The procedure which Milne (Ref. 24) recommends most highly for solving
ordinary differential equations uses

Yivr = Yi—s + 4hy's 1 + 8h/3(y' i1 — 20'i—2 + ¥'i—s) + 58h°Y©®
to extrapolate and formula 6, Table 10, which is Simpson’s rule,
Yigr = Yi1 + h/3(W5—1 + 45 + i) — By /90

to recalculate.
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Solution by formulas 2 and 6. A procedure which requires less past history
and therefore is better for starting and at discontinuities uses formula 2,
Table 9, to find a third order approximation to y;,, and Simpson’s rule to
recalculate. Kither procedure calculates derivatives only once per point.

Formula 7, Table 10, is unstable and therefore useful for extrapolation
but not for recalculation.

Method of Adams and Bashforth (Ref. 25). This approach is best
expressed in terms of differences:

Vy'i =¥ — Y-,

Vi =V —y'im) =¥ — 25 + s,

Vn?jlj — V(Vn—lylj _ Vn_ly/j_l),
Yit1 = ¥+ h(y'; + Vy'3/2 + 5VPy';/12 4- 3V3y/;/8 + 2514y ;/720 + - - ).

TFor solutions whose derivatives of some order are everywhere continu-
ous, this method has the advantage of yielding arbitrarily high order of
approximation with only one evaluation of derivatives per point. TFor auto-
matic computer use, it has several disadvantages which lead to its rare use.
A special starting process is required; it is awkward to change grid size; at
each isolated discontinuity, the special starting process must be used again.

The Runge-Kutta Method. Like Euler’'s and Heun’s methods, this
method avoids these difficulties (Refs. 26 and 27). It has several forms.
One of the best known, which has a truncation error proportional to k%, is:

Yi+1 = Yi + (ky + 2ko + 2k3 + k4)/6
ky = hf(zj, y;),
ko = hf(x; + h/2, y; + k1/2),
ks = hf(x; + h/2, y; + ko/2),
ks = hf(x; + R, y; + k3).

The Runge-Kutta method was recently adapted to automatic computers
by Gill in a form which concentrates on saving memory and reducing round-
off error (Ref. 28).

All forms of the Runge-Kutta method have the disadvantage that the
derivatives must be evaluated several times, four in these two cases.

Fourth Order Mcthod. This method has been used extensively on
automatic computers since 1946 and has been carefully studied by Dims-
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dale and Clippinger (Ref. 29). It consists in extrapolating for ;.2 by the
third order formula using one past point (see Table 11):

(320) Yize = Yi—2 + 4yj—2 — ¥;) + 4h(2Y'; + 'i—2) + 2hy; .
The derivative y'; s is then found and also y;41 by
(32b)  yiq1 = (W5 + ¥i42)/2 + /D5 — ¥ige) — Ry /24,

The derivative y’; 1 is then found, and y;4.s is redetermined by Simpson’s
rule:

(82¢) Yivz = Yi + h/3W'5 + i1 + Vige) + By /90.

Isolated discontinuities are made to fall at odd-numbered grid points by
adjusting h. To start, or at points where the grid size is altered, eqs. (32c)
and (32b) are iterated, and eq. (32a) is not used. Thus, like Runge-Kutta’s
or Gill’s methods, this method requires no past history, and is well suited to
starting, discontinuities, and change of grid size. By the addition of a
single point from past history, it achieves the efficiency of Adam’s, Milne’s,
and other methods requiring only one evaluation of derivatives per point.

Higher Derivatives. Sometimes eq. (29) can be easily differentiated.
In this case a fourth order, stable procedure requiring no past history is
obtained by eliminating h3y®, and Aty™® from eqs. (30a), (30b), and (30c)
ati =0, 1:

Yip1 = Ui + W5 + Vi) /2 + B — yv'540)/12 + hPy® /720,
By adding a single point from past history, one obtains the predicior,
Yip1 = 32y; — 3ly;—1 — 2h(8y’; + Ty'i—1)

+ W9y — 4y -1)/2 + K@ /720,
and the seventh order corrector,

Yi1 = Yi—1 + 2y; + 3h(Y'j41 — ¥'j-1)/8
+ RP@y; =y — yi4)/24 + ftgyf(s) /60450,

which can be used except at the start, at discontinuities, and at grid change
points.

Method of Brock and Murray. A method which takes advantage of the
fact that differential equations are locally linear with constant coefficients
and therefore have solutions which are locally linear combinations of expo-
nentials has been developed by Brock and Murray (Ref. 48).

Extrapolation to Zero Grid Size. If a method has a local error
proportional to AT, it has an error at a given z proportional to A", since
the number of local errors made going from xy to = is (x — xg)/h. By call-
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ing e the error at z, and the exact answer, 7, then,
(33) e=y—7=ah™+ bh"tl 4 p,

where the remainder, », goes to zero as k" 2. If eq. (29) is solved numeri-
cally at two grid sizes, h; and ke, one may write eq. (33) at both grids and
solve for 7:

B4 7=y + @ — y)r"/(L = 1) + "1 = 1)/ (1L = 1)
— (m — r"n2)/(1 — 1),

where 7 = hy/hy. Richardson (Ref. 30), who invented this procedure,
called it “extrapolation to zero grid size.”” Looking at the next to last
term, one sees that it would be more apt to call it “increasing the order
of accuracy from n to n + 1.”” Equation (34) is useful in many ways. For
example: (a) One can solve (29) at two grid sizes and use eq. (34) to get a
better answer at common points. (b) One can solve (29) at one grid size
and occasionally take a step at two grid sizes by using the second term to
estimate the error and adjust the grid size. (With this procedure it is im-
portant to use methods which depend on little past history.) (c) One can
take every step at two grids, use eq. (34) to improve the accuracy before
proceeding, and also use the second term to adjust the grid size.

Boundary Value Problems or Distributed Conditions. It may
happen that not all components of y are specified at one value of z. In-
stead, some of the components of ¥ may be given in terms of the others at
two or more points.

Approach A. Perhaps the most obvious approach to this problem is to:

1. Assume initial conditions at .

2. Solve the problem.

3. Assume other initial conditions.

4. Resolve the problem.

5. Interpolate between the initial conditions for initial conditions which
will satisfy one of the other given conditions at some other point. (This
is based on the theorem that the solutions of differential equations are,
under suitable conditions, continuous functions of their values at particu-
lar points.) )

6. Reiterate this process until all conditions are satisfied. If there are
many conditions to be satisfied by varying the same number of compo-
nents of y at x, as parameters, the interpolation process becomes quite
complicated. If convergence is also slow, it may be necessary to solve the
differential equation thousands of times, treating the different equations
and distributed conditions as simultaneous equations for all the variables
at all the points.
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Approach B is to eonsider all the distributed conditions and the approxi-
mating equations simultaneously. For instance, consider the second order
system:

(35) y, = f(:l?, Y, z); Z = g(xr Y, Z),
with the distributed conditions:
(36) y(a) = A, ky(b) + lz(b) + my’(b) 4 2'(b) = 0.

One might use Heun’s approximating difference equations:
Yivr — ¥ = (F(&5, v, 25) + F@i1, Yigr, 2i41)) (0/2),
ziy1 — 25 = (9(@j, Yj, 2) + 9@j41, Yit1, 2741)) (h/2).

Replacing a, b by x4, 2, one would write the side conditions eq. (36) in the
form

37)

y(@o) = 4
MYn — Yn—1) + @n — 2n_1) = (B/2)[Mfr_1 + gn—1 — kyn — l24],

where the second eq. (36) is replaced by one equivalent to it to thlrd order
and f, is written for f(z,, ¥n, 2a).

Equations (37) and (38) are 2(n + 1) simultaneous equations for the
2(n + 1) unknowns y;, 25, 7 = 0,1, 2, - - -, n. They are not linear; however,
h appears as a factor of the right members and the left members are linear.
It is therefore natural and quite practical to define an iterative process,
writing y;* and z;* for the ith approximation to y; and z;:

(38)

Yo' = A4,
Yier' — 4 = W2+ ST,
B9) ozt =